
  
  

How 2 HAWC2, the user's manual 
 

Torben J. Larsen, Anders M. Hansen 
Edited by the DTU Wind Energy HAWC2 Development Team 

Risø-R-1597(ver. 12.7)(EN) 

 

 

 

Risø National Laboratory 
Technical University of Denmark 

Roskilde, Denmark 
May 2019 





Authors: Torben Juul Larsen, Anders M. Hansen. Edited by the DTU Wind
Energy HAWC2 Development Team
Title: How 2 HAWC2, the user’s manual
Institute: Department of Wind Energy

Abstract:
The report contains the user’s manual for the aeroelastic code HAWC2. The
code is intended for calculating wind turbine response in time domain and has a
structural formulation based on multi-body dynamics. The aerodynamic part of
the code is based on the blade element momentum theory, but extended from the
classic approach to handle dynamic inflow, dynamic stall, skew inflow, shear
effects on the induction and effects from large deflections. It has mainly been
developed within the years 2003-2006 at the aeroelastic design research
programme at Risoe, National laboratory Denmark, but is continuously updated
and improved.
This manual is updated for HAWC2 version 12.7 and wkin.dll version 2.4

Risø-R-1597(ver. 12.7)(EN)
May 2019
ISSN 0106-2840 ISBN
978-87-550-3583-6
Groups own reg. no.: 1110412-3

Technical University of Denmark
DTU Wind Energy
Frederiksborgvej 399
4000 Roskilde
Denmark
Telephone +45 45 46774004
bibl@risoe.dk
Fax +45 46774013

- 3



Contents

Cover 1

Table of contents 4

1 Preface 8

2 Acknowledgements 9

3 Contributors 9

4 Getting started with HAWC2 10

4.1 Running HAWC2 10

4.2 Folder structure 10

4.3 Debugging models 10

5 General input layout 12

5.1 Continue_in_file option 12

6 HAWC2 version handling 13

7 Coordinate systems 14

8 Simulation 16

8.1 Main command block - Simulation 16

8.2 Sub command block - newmark 16

9 Structural input 17

9.1 Main command block - new_htc_structure 17

9.2 Sub command block - main_body 19

9.3 Sub command - orientation 29

9.4 Sub command - constraint 32

10 DLL control 38

10.1 Main command block – dll 38

10.2 Sub command block – hawc_dll 38

10.3 Sub command block – type2_dll 39

10.4 Sub command block – init 40

4 -



10.5 Sub command block – output 40

10.6 Sub command block – actions 40

10.7 HAWC_DLL format example written in FORTRAN 90 44

10.8 HAWC_DLL format example written in Delphi / Lazarus / Pascal 45

10.9 HAWC_DLL format example written in C 46

10.10TYPE2_dll written in Delphi / Lazarus / Delphi 47

10.11TYPE2_dll written in C 48

10.12TYPE2_DLL format example written in FORTRAN 90 49

11 Wind and Turbulence 50

11.1 Main command block -wind 50

11.2 Sub command block - mann 52

11.3 Sub command block - flex 54

11.4 File description of a user defined shear 55

11.5 Example of user defined shear file 55

11.6 Sub command block - wakes 56

11.7 File description of a user defined wake deficit file 57

11.8 Example of user defined wake deficit file 58

11.9 Sub command block – tower_shadow_potential 59

11.10Sub command block – tower_shadow_jet 59

11.11Sub command block – tower_shadow_potential_2 59

11.12Sub command block – tower_shadow_jet_2 60

11.13Sub command block – turb_export 60

12 Aerodynamics 62

12.1 Main command block - aero 62

12.2 Sub command block – dynstall_so 63

12.3 Sub command block – dynstall_mhh 63

12.4 Sub command block – dynstall_ateflap 64

12.5 Sub command block – aero_noise 65

12.6 Sub command block – bemwake_method 67

12.7 Sub command block – nearwake_method 67

12.8 Sub command block – vawtwake_method 68

12.9 Data format for the aerodynamic layout 68

12.10Example of an aerodynamic blade layout file 69

12.11Data format for the profile coefficients file 70

12.12Example of the profile coefficients file “_pc file” 70

- 5



12.13Data format for the flap steady aerodynamic input (.ds file) 71

12.14Example of a .ds flap steady aerodynamic input file 72

12.15Data format for the user defined a-ct relation 72

12.16Main command block – blade_c2_def (for use with old_htc_structure format)
73

13 Aerodrag (for tower and nacelle drag) 74

13.1 Main command aerodrag 74

13.2 Subcommand aerodrag_element 74

14 Hydrodynamics 75

14.1 Main command block - hydro 75

14.2 Sub command block – water_properties 75

14.3 Sub command block – hydro_element 75

14.4 Description of the water_kinematics_dll format. 77

14.5 User manual to the standard wkin.dll version 2.4. 77

14.6 Main commands in the wkin.dll 78

14.7 Sub command reg_airy 78

14.8 Sub command ireg_airy 78

14.9 Sub command det_airy 79

14.10Sub command strf 79

14.11Sub command wavemods 79

14.12Wkin.dll example file 81

15 Soil module 82

15.1 Main command block - soil 82

15.2 Sub command block – soil_element 82

15.3 Data format of the soil spring datafile 82

16 External forces through DLL 84

16.1 Main command block – Force 84

16.2 Example of a DLL interface written in fortran90 84

16.3 Example of a DLL interface written in Lazarus / Pascal 85

17 Output 86

17.1 Commands used with results file writing 86

17.2 File format of HAWC_ASCII files 87

17.3 File format of HAWC_BINARY files 87

6 -



17.4 File format for gtsdf and gtsdf64 files 89

17.5 mbdy (main body output commands) 89

17.6 Constraint (constraint output commands) 92

17.7 aero (aerodynamic related commands) 93

17.8 wind (wind output commands) 100

17.9 wind_wake (wind wake output commands) 101

17.10dll (DLL output commands) 101

17.11hydro (hydrodynamic output commands) 102

17.12general (general output commands) 102

17.13Output_at_time (output at a given time) 103

A Example of main input file 106

B Code Version Data 118

- 7



1 Preface

The HAWC2 code is a code intended for calculating wind turbine response in time domain. It
has been developed within the years 2003-2006 at the aeroelastic design research programme
at Risoe, National laboratory Denmark.

The structural part of the code is based on a multibody formulation where each body is an
assembly of Timoshenko beam elements. The formulation is general which means that quite
complex structures can be handled and arbitrary large rotations of the bodies can be handled.
The turbine is modeled by an assembly of bodies connected with constraint equations, where
a constraint could be a rigid coupling, a bearing, a prescribed fixed bearing angle etc. The
aerodynamic part of the code is based on the blade element momentum theory, but extended
from the classic approach to handle dynamic inflow, dynamic stall, skew inflow, shear effects on
the induction and effects from large deflections. Several turbulence formats can be used. Control
of the turbine is performed through one or more DLL’s (Dynamic Link Library). The format
for these DLL’s is also very general, which means that any possible output sensor normally
used for data file output can also be used as a sensor to the DLL. This allows the same DLL
format to be used whether a control of a bearing angle, an external force or moment is placed
on the structure. The code has internally at Risoe been tested against the older validated code
HAWC, the CFD code Ellipsys and numerous measurements. Further on detailed verification
is performed in the IEA annex 23 and annex 30 research project regarding offshore application.
Scientific papers involving the HAWC2 is normally posted on the www.hawc2.dk homepage,
where the code, manual and more can be downloaded. During the programming of the code
a lot of focus has been put in the input checking so hopefully meaningful error messages are
written to the screen in case of lacking or obvious erroneous inputs. However since the code is
still constantly improved we appreciate feedback from the users – both good and bad critics are
welcome. The manual is also constantly updated and improved, but should at the moment cover
the description of available input commands.

8 -



2 Acknowledgements

The code has been developed primarily by internal funds from Risø National Laboratory –
Technical University of Denmark, but the research that forms the basis of the code is mainly
done under contract with the Danish Energy Authority. The structural formulation of the model
is written by Anders M. Hansen as well as the solver and the linking between external loads
and structure. The anisotropic FPM beam model is written by Christian Pavese, Taeseong Kim
and Anders M. Hansen. The aerodynamic BEMmodule is written by Helge A. Madsen, Torben
J. Larsen and Georg R. Pirrung. Three different stall models are implemented where the S.Ø.
(Stig Øye) model is implemented by Torben J. Larsen, the mhh Beddoes model is written by
Morten Hansen, Mac Gaunaa and Georg R. Pirrung and the ateflap model used for trailing
edge flaps is written by Mac Gaunaa and Peter Bjørn Andersen and has later been rewritten by
Leonardo Bergami. The near wake model has been developed by Georg R. Pirrung, Ang Li,
Helge Aa. Madsen and Peter B. Andersen. The wind and turbulence module as well as the soil
and DLL modules are written by Torben J. Larsen. The hydrodynamic module is written by
Anders M. Hansen and Torben J. Larsen. The turbulence generator is written by Jacob Mann
and the WAsP Team and converted into a DLL by Peter Bjørn Andersen. The dynamic wake
meandering module is written by Helge A. Madsen, Gunner Larsen and Torben J. Larsen, and
has been further maintained by Jaime Liew. The eigenvalue solver is implemented by Anders M.
Hansen and John Hansen. The Gitlab repository including automatic testing and compilation
was created by Mads M. Pedersen and Anders M. Hansen. Torben J. Larsen and Anders
M. Hansen were the main authors of the manual up to version 4.7, and the main developers of
HAWC2 up to version 12.7.Maintenance of the codebase, webpage and themanual is performed
by the HAWC2 development team at DTU Wind Energy. Additional authors are listed in the
Contributors section.

3 Contributors

Anders Melchior Hansen
Torben Juul Larsen
Peter Bjørn Andersen
Leonardo Bergami
Franck Bertagnolio
Emmanuel Simon Pierre Branlard
Mikkel Friis-Møller
Christos Galinos
Mac Gaunaa
Ozan Gözcü
John Hansen
Morten Hartvig Hansen
Joachim Christian Heinz
Lars Christian Henriksen
Sergio González Horcas
Gunner Christian Larsen

Ang Li
Jaime Liew
Helge Aagaard Madsen
Jacob Mann
Taeseong Kim
Mads Mølgaard Pedersen
Christian Pavese
Georg Raimund Pirrung
Jennifer Rinker
Riccardo Riva
Alexander Stäblein
Albert Meseguer Urban
David Robert Verelst
Shaofeng Wang
Frederik Zahle

- 9



4 Getting started with HAWC2

This section contains some basic overview information and tips on debugging fileswhen running
HAWC2. A more detailed description of the format of the input file is discussed in Section 5.

4.1 Running HAWC2

HAWC2 is run by calling the HAWC2 executable from a Windows Command Prompt on the
input file, which has a .htc file extension (see Section 5):

> <path to HAWC2 executable> <path to htc file>

For example, if the current working directory of the Command Prompt contains both your
HAWC2 executable and an input file called turbine_model.htc (which is not a recommended
folder structure, see below), the command to run HAWC2 would be

> HAWC2MB.exe turbine_model.htc

Important!Any relative paths in the htc file will be defined with respect to the current working
directory of the Command Prompt, not with respect to the file’s location.

4.2 Folder structure

HAWC2 does not assume any folder structure, so the executable and the input file can be located
anywhere that is accessible by the Command Prompt. However, it is often best to separate
different wind turbine models so that their results do not overwrite each other. It can also
be nice to separate the HAWC2 executable from the input/output files in order to keep the
directories as clean as possible.

One way to do this is to place HAWC2 and all its required DLLs in one directory and
all of the files related to a specific turbine model in another directory. Let us demonstrate
this with an example. Assume that we have placed the HAWC2 executable and all related
DLLs in C:\hawc2\. We desire to run an htc file, called input_a.htc, that is located
in C:\Documents\turbine_models\prototype_a\htc\. However, the htc file contains
relative paths that are defined with respect to the prototype_a\ directory. In this case, we must
first change the working directory to the prototype_a\ directory so that the relative paths in
the htc file point to the correct files, and then we can call the HAWC2 executable on the input
files using an absolute path. The commands for this example would be as follows:

> cd C:\Documents\turbine_models\prototype_a\

> C:\hawc2\HAWC2MB.exe .\htc\input_a.htc

4.3 Debugging models

Although HAWC2 is run from the Command Prompt, the errors that are printed to it when
something goes wrong are often not illuminating to the average user. If something goes wrong
with your model, you should first check the output log to see what warnings and errors are
printed there. The output log is a text file ending in .log, and its location is determined by the
logfile option in the simulation block in the htc file.

One of the most common errors for new users is having the wrong working directory in the
Command Prompt, in which case the log file will state that it could not find the requested data
files. Other common errors when running time-marching simulations include bad simulation

10 -



parameters that lead to non-convergence or incorrect definitions of body properties. Regardless,
your first step when debugging a model should always be to look at the log file to determine
what went wrong. If you cannot find the source of your problem, you can email the HAWC2
support address (hawc2@windenergy.dtu.dk) to ask for help.

Important! HAWC2 is a flexible software with many different simulation options, so building
a model from the ground up is complicated and not recommended. We recommend starting
from a working model (see the HAWC2 website to download a working wind turbine model)
and incrementally making changes as needed.

- 11



5 General input layout

HAWC2 takes as input a text file with an .htc file extension. The HAWC2 input format is
written in a form that forces the user to write the input commands in a structured way so
aerodynamic commands are kept together, structural commands the same, etc. The order of the
blocks does not matter.

The input commands are divided into command blocks, which are defined using a begin-
end syntax. Each line must end with a semi colon “;” which gives the possibility for writing
comments and the end of each line after the semi colon. The command lines can be written with
any desired mix of capital or small letters because inside the code all lines are transformed into
small letters. This could be important if something case-sensitive is written (e.g., the name of
a subroutine within a DLL).

Important! All lines in an htc file must end with a semicolon, even if they are empty. You
may insert whitespace between blocks to improve readability by having a line that is just a
semicolon.

In the next chapters, the input commands are explained for every part of the code. The commands
are separated into “main block” commands (namely, those that belong to a begin-end command
block that is not part of a higher-level begin-end block) and “sub command blocks” (those that
belong to a begin-end block included within another block). An example is printed below.:
“simulation” is a main command block and “newmark” is a sub command block.

begin simulation;

time_stop 100.0 ;

solvertype 2 ; (sparse newmark)

;

begin newmark;

beta 0.27;

gamma 0.51;

deltat 0.02;

end newmark;

end simulation;

5.1 Continue_in_file option

A feature from version 6.0 and newer is the possibility of continuing reading of the main
input file into another. The command word continue_in_file followed by a file name causes
the program to open the new file and continue reading of input until the command word exit.
When exit is read the reading will continue in the previous file. An infinite number of file levels
can be used. The HAWC2 input format is written in a form that forces the user to write the
input commands in a structured way so aerodynamic commands are kept together, structural
commands the same etc.

Command name Explanation
continue_in_file 1. File name (and path) to sublevel input file
exit End of input file. Input reading is continued in higher level input

file.

12 -



6 HAWC2 version handling

The HAWC2 code is still frequently updated and version handling is therefore of utmost
importance to ensure quality control. For every new released version of the code a new version
number is hard coded in the source. This number can be found by executing the HAWC2.exe
file without any parameters. The version number is echoed to screen. The same version number
is also written to every result file no matter whether ASCII or binary format is chosen. Hereby
it is possible to reproduce all results at later stage and to dig in the source code for at previous
version if special problems occur.

All information covering the different code versions has been made. These data are listed in
appendix B.

- 13



7 Coordinate systems

The global coordinate system is located with the z-axis pointing vertical downwards. The x and y
axes are horizontal to the side. When wind is submitted, the default direction is along the global
y-axes. Within the wind system meteorological u,v,w coordinates are used, where u is the mean
wind speed direction, v is horizontal and w vertical upwards. When x,y,z notation is used within
the wind coo. this refers directly to the u,v,w definition. Every substructure and body (normally
the same) is equipped with its own coordinate system with origo in node1 of this structure. The
structure can be arbitrarily defined regarding orientation within this coordinate system. Within
a body a number of structural elements are present. The orientation of coordinate systems for
these elements are chosen automatically by the program. The local z axis is from node 1 to 2
on the element. The coordinate system for the blade structures must be defined with the z axis
pointing from the blade root and outwards, x axis in the tangential direction of rotation and y
axis from the pressure side towards the suction side of the blade profiles. This is in order to
make the linkage between aerodynamics and structure function.

In order to make a quick check of the layout of the structure the small program “animation.exe”
can be used (this requires than an animation file has been written using the command animation
in the Simulation block). The view option in this program is handled by keyboard hotkeys:

Animation Hotkeys:

translate: (shift)+{x,y,z}

rotate: arrow keys

rotate about line-of-sight: ctrl+left/right

zoom in: ctrl+up

zoom out: ctrl+down

amplify displacement (only for animation of natural frequencies): +

decrease displacement (only for animation of natural frequencies): -

If the animation does not start, press “s”

14 -



Figure 1: Illustration of coordinate system as result of user input from example in appendix A:
Example of main input file. There are two coordinate systems in black which are the default
coordinate systems of global reference and default wind direction. The blue coordinate systems
are main body coordinate systems attached to node 1 of the substructure, the orientation of
these are fully determined by the user. The red coordinate systems are also defined by the user,
but in order to make the linkage between aerodynamic forces and structure work these have to
have the z from root to tip, x in chordwise direction and y towards the suction side.

- 15



8 Simulation

8.1 Main command block - Simulation

Obl. Command name Explanation
* time_stop 1. Simulation length [s]

solvertype 1. Solver type (1=dense newmark (default), 2=sparse newmark
(faster and recommended. New in version 12.7))

solver_relax 1. Relaxation parameter on increment within a timestep. Can be
used to make difficult simulation run through solver when
parameter is decreased, however on the cost of simulation
speed. Default=1.0

on_no_convergence Parameter that informs solver of what to do if convergence is
not obtained in a time step.
1. ‘stop’: simulation stops – default. ‘continue’: simulation
continues, error message is written.

convergence_limits Convergence limits that must be obtained at every time step.
1. epsresq, residual on internal-external forces, default=10.0
2. epsresd, residual on increment, default=1.0
3. epsresg, residual on constraint equations, default=1E-7

max_iterations 1. Number of maximum iterations within a time step.
animation Included if animation file is requested

1. Animation file name incl. relative path. E.g.
./animation/animation1.dat

visualization Included if simulation visualization file is requested
1. Visualization file name incl. relative path. E.g.
./visualization/example.hdf5;

logfile Included if a logfile is requested internally from the htc
command file.
1. Logfile name incl. relative path. E.g. ./logfiles/log1.txt

8.2 Sub command block - newmark

Obl. Command name Explanation
beta 1. beta value (default=0.27)
gamma 1. gamma value (default=0.51)

* deltat 1. time increment [s]
symmetry 1. Solver assumtion regarding mass, damping and stiffness

matrices (1=symmetric (default), 2=assymetric (recommended
for offshore structures). When hydrodynamic loading is applyed
this parameter will automatically change to 2.)

16 -



9 Structural input

9.1 Main command block - new_htc_structure

- 17



Obl. Command name Explanation
beam_output_file_name Write the beam properties for all bodies.

1. File name including relative path to file where the beam data
are listed (output) (example ./info/beam.dat)

body_output_file_name Write the initial conditions and inertia matrix for all bodies.
1. File name including relative path to file where the body data
are listed (output) (example ./info/body.dat)

struct_inertia_output_file_name For all bodies, write the inertia matrix, with respect to the center
of gravity, in global and local coordinates.
1. File name including relative path to file where the global
inertia information data are listed (output) (example
./info/inertia.dat)

body_matrix_output Write the assembled stiffness, damping and mass matrices for
all bodies.
1. Folder name where the bodies structural matrices are listed
(example ./info/body).

element_matrix_output Write the elements stiffness, damping and mass matrices.
1. File name including relative path to file where the elements
structural matrices are listed (example ./info/element.dat).

constraint_output_file_name Write the initial conditions of the constraints in global
coordinates.
1. File name including relative path to file where the constraint
data are listed (output). (example ./info/constraint.dat)

body_eigenanalysis_file_name Do the eigenanalysis for all bodies (not recommended). Write the
damped frequency, natural frequency and logarithmic decrement.

structure_eigenanalysis_file_name Do the eigenanalysis for the entire structure. Write the
damped frequency, natural frequency, logarithmic decrement and
animation of the mode shapes.
1. File name including relative path to file where the results of
an complete turbine eigenanalysis are listed (example
./info/eigen_all.dat). Animation files are placed in the same
directory of the file name.
2. Optional parameter determining if structural damping is
included in the eigenvalue calculation or not. (0=damping not
included, most robust method, 1=damping included default)

system_eigenanalysis_file_name Do the eigenanalysis for the entire structure, including external
systems attached, eg. mooring lines. Constraint equations are
also fully included in the analysis. Write the damped frequency,
natural frequency, logarithmic decrement and animation of the
mode shapes.
1. File name including relative path to file where the results of
an complete turbine eigenanalysis are listed (example
./info/eigen_all.dat). Animation files are placed in the same
directory of the file name.
2. (optional) Parameter determining if structural damping is
included in the eigenvalue calculation or not. (0=damping not
included, most robust method, 1=damping included default)
3. (optional) Number of modes outputted.
4. (optional) Time for when the eigenanalysis is carried out. Eg.
after a settling of a floating system.

18 -



9.2 Sub command block - main_body

This block can be repeated as many times as needed. For every block a new body is added
to the structure. A main body is a collection of normal bodies which are grouped together for
bookkeeping purposes related to input output. When a main body consist of several bodies the
spacing the name of each body inherits the name of the master body and is given an additional
name of ‘_#’, where # is the body number. An example could be a main body called ‘blade1’
which consist of two bodies. These are then called ‘blade1_1’ and blade1_2’ internally in the
code. The internal names are only important if (output) commands are used that refers to the
specific body name and not the main body name.

Fromversion 11.6 it is possible to attach an encryptedDLLwhere the blade data can be extracted.
An example of how to encrypt this can be obtained by request through the www.hawc2.dk web
page.

- 19

www.hawc2.dk


Obl. Command name Explanation
* name 1. Main_body identification name (must be unique)
* type 1. Element type used (options are: timoschenko)
* nbodies 1. Number of bodies the main_body is divided into (especially

used for blades when large deformation effects needs attention).
Equal number of elements on each body, eventually extra
elements are placed on the first body.

* node_distribution 1. Distribution method of nodes and elements. Options are:
“uniform” nnodes. Where uniform ensures equal element length
and nnodes are the node numbers.
“c2_def”, which ensures a node a every station defined with the
sub command block c2_def.

damping Original damping model that can only be used when the shear
center location equals the elastic center to ensure a positive
definite damping matrix. It is recommended to use the
damping_posdef command instead. Rayleigh damping
parameters containing factors that are multiplied to the mass
and stiffness matrix respectfully.
! Pay attention, the mass proportional damping is not
contributing when a mbdy consist of multiple bodies !
1. Mx

2. My

3. Mz

4. Kx

5. Ky

6. Kz

NOTE: This damping model cannot be used with the Fully
Populated Matrix (“FPM 1”, see below) beam element!

damping_posdef Rayleigh damping parameters containing factors. Mx , My , Mz

are constants multiplied on the mass matrix diagonal and
inserted in the damping matrix. Kx , Ky , Kz are factors
multiplied on the moment of inertia Ix , Iy , Iz in the stiffness
matrix and inserted in the damping matrix. Parameters are in
size approximately the same as the parameters used with the
original damping model written above.
! Pay attention, the contribution from mass proportional
damping is limited when a mbdy consist of multiple bodies !
1. Mx

2. My

3. Mz

4. Kx

5. Ky

6. Kz

NOTE: This damping model cannot be used with the Fully
Populated Matrix (“FPM 1”, see below) beam element!

20 -



Obl. Command name Explanation
damping_aniso Mixed mass/stiffness proportional and stiffness proportional

damping parameters containing factors. ηmx , ηmy , ηmt are
constants multiplied on a mixed mass/stiffness matrix diagonal
and inserted in the damping matrix. ηsx , ηsy , ηst are factors
multiplied on the moment of inertia Ix , Iy , Iz in the stiffness
matrix and inserted in the damping matrix.
! Pay attention, the mass/stiffness proportional damping is not
contributing when a mbdy consist of multiple bodies !
Damping_aniso will give a similar damping to damping_posdef
if 1) only stiffness proportional damping is used (first three
coefficients in both models are zero) and 2) the 4th and 5th
parameters are swapped (nsy = Kx and nsx = Ky)
! See the command for the corrected version of damping_aniso
below !
1. ηmx
2. ηmy
3. ηmt
4. ηsx
5. ηsy
6. ηst

damping_aniso_v2 Identical usage as damping_aniso, but a minor bug in the
torsional damping computation has been fixed.

copy_main_body Command that can be used if properties from a previously
defined body shall be copied. The name command still have to
be present, all other data are overwritten.
1. Main_body identification name of main_body that is copied.

gravity 1. Specification of gravity (directed towards zG).
NB! this gravity command only affects the present main body.
Default=9.81 [m/s2]

concentrated_mass Concentrated masses and inertias can be attached to the
structure. The offset distance from the node to the center of
mass is given in the body’s coordinates system. The moments
and products of inertia is given around the center of mass in the
body’s coordinates system.
1. Node number to which the inertia is attached.
2. Offset distance x-direction [m]
3. Offset distance y-direction [m]
4. Offset distance z-direction [m]
5. Mass [kg]
6. Ix x [kg m2]
7. Iy y [kg m2]
8. Iz z [kg m2]
9. Ix y [kg m2] – optional
10. Ix z [kg m2] – optional
11. Iy z [kg m2] – optional

external_bladedata_dll Blade structural data are found in an external encrypted dll. If
this command is present only these other command lines need
to be present (name, type, nbodies, node_distribution and a
damping command line).
1. Company name (that has been granted a password, eg. dtu).
2. Password for opening this specific dll, eg. test1234
3. path and filename for the dll. eg. ./data/encr_blade_data.dll

- 21



9.2.1 Sub sub command block – timoschenko_input

Block containing information about location of the file containing distributed beam property
data and the data set requested.

Obl. Command name Explanation
* filename 1. Filename incl. relative path to file where the distributed beam

input data are listed (example ./data/hawc2_st.dat)
FPM Logic command for Fully Populated Matrix beam element:

1. Write “1” to read a structural input file based on the fully
populated stiffness matrix. Write “0” for the original beam
model

If the command is neglected, HAWC2 will assume that the
structural input file is based on the original beam model

* set 1. Set number
2. Sub set number

9.2.2 Sub sub command block – c2_def

In this command block the definition of the centerline of the main_body is described (position
of the half chord, when the main_body is a blade). The input data given with the sec commands
below is used to define a continous differentiable line in space using akima spline functions.
This centerline is used as basis for local coordinate system definitions for sections along the
structure. If two input sections are given it is assumed that all points are on a straight line. If
three input sections are given points are assumed to be on the line consisted of two straight
lines. If four or more input sections are given points are assumed to be on an akima interpolated
spline. This spline will include a straight line if a minimum of three points on this line is defined.

Figure 2: Illustration of c2_def coordinate system related to main body coordinates. The blade
z-coordinate has to be positive from root towards the tip.

22 -



Obl. Command name Explanation
* nsec Must be the present before a “sec” command.

1. Number of section commands given below
* sec Command that must be repeated “nsec” times. Minimum 4

times.
1. Number
2. x-pos [m]
3. y-pos [m]
4. z-pos [m ]
5. θz [deg]. Angle between local x-axis and main_body x-axis
in the main_body x-y coordinate plane. For a straight blade this
angle is the aerodynamic twist. Note that the sign is positive
around the z-axis, which is opposite to traditional notation for
etc. a pitch angle.

Here is an illustration of how a blade can be defined with respect to discretisation of bodies,
nodes and elements.

Here is an example of this written into the htc-input file.

begin main_body;

name blade1 ;

type timoschenko ;

nbodies 6 ;

node_distribution c2_def;

damping_posdef 1.17e-4 5.77e-5 6.6e-6 6.6e-4 5.2e-4 6.5e-4 ;

begin timoschenko_input ;

filename ./data/st_file.txt ;

FPM 0; (optional, when parameter is 0)

set 1 1 ; set subset

end timoschenko_input;

begin c2_def; Definition of centerline (main_body coordinates)

nsec 19 ;

sec 1 -0.0000 0.0000 0.000 0.000 ;

sec 2 -0.0041 0.0010 3.278 -13.590 ;

sec 3 -0.1048 0.0250 6.556 -13.568 ;

sec 4 -0.2582 0.0492 9.833 -13.564 ;

sec 5 -0.4694 0.0587 13.111 -13.546 ;

sec 6 -0.5689 0.0957 16.389 -11.406 ;

sec 7 -0.5455 0.0883 19.667 -10.145 ;

sec 8 -0.5246 0.0732 22.944 -9.043 ;

sec 9 -0.4362 0.0669 26.222 -7.843 ;

sec 10 -0.4644 0.0554 29.500 -6.589 ;

sec 11 -0.4358 0.0449 32.778 -5.447 ;

sec 12 -0.4859 0.0347 36.056 -4.234 ;

- 23



sec 13 -0.3759 0.0265 39.333 -3.545 ;

sec 14 -0.3453 0.0130 42.611 -2.223 ;

sec 15 -0.3156 0.0084 45.889 -1.553 ;

sec 16 -0.2791 0.0044 49.167 -0.934 ;

sec 17 -0.2675 0.0017 52.444 -0.454 ;

sec 18 -0.1785 0.0003 55.722 -0.121 ;

sec 19 -0.1213 0.0000 59.000 -0.000 ;

end c2_def ;

end main_body;

Format definition of file including distributed beam properties The format of this file
which in the old HAWC code was known as the hawc_st file is changed slightly for the HAWC2
new_htc_structure format. In the file (which is a text file) two different datasets exist. There
is a main set and a sub set. The main set is located after a “#” sign followed by the main set
number. Within a main there can be as many subsets as desired. They are located after a “$”
sign followed by the local set number. The next sign of the local set number is the number of
lines in the following rows that belong to this sub set.

There are two types st_file: - The st_file for the original HAWC2 beam element; input parameters
for this model are reported in Table 1 HAWC2 original beam element structural data The st_file
for the new anisotropic FPM beam element; input parameters reported in - Table 2 NewHAWC2
anisotropic beam element structural data

In general all centers are given according to the C1/2 center location and all other are related
to the principal bending axes. For the anisotropic beam element, centers are given according
to the C1/2 center location, but the cross sectional stiffness matrix is given at the elastic center
rotated along the principal bending axes.

Figure 3: Illustration of structural properties that in the input files are related to the c2 coordinate
system.

A small explanation about radius of gyration (also called radius of inertia) and the area moment
of inertia (related to stiffness) is shown below in N.5 and N.11

An example of a st original beam formulation input file can be seen on the next page. The most
important features to be aware of are colored with red.

24 -



Table 1: HAWC2 original beam element structural data

Column Parameter
1 r, curved length distance from main_body node 1 [m]
2 m, mass per unit length [kg/m]
3 xm, xc2-coordinate from C1/2 to mass center [m]
4 ym, yc2-coordinate from C1/2 to mass center [m]
5 rix , radius of gyration related to elastic center. Corresponds to

rotation about principal bending xe axis [m]
6 riy , radius of gyration related to elastic center. Corresponds to

rotation about principal bending ye axis [m]
7 xs , xc2-coordinate from C1/2 to shear center [m]. The shear

center is the point where external forces only contributes to pure
bending and no torsion.

8 ys , yc2-coordinate from C1/2 to shear center [m]. The shear
center is the point where external forces only contributes to pure
bending and no torsion.

9 E, modulus of elasticity [N/m2]
10 G, shear modulus of elasticity [N/m2]
11 Ix , area moment of inertia with respect to principal bending xe

axis [m4 ]. This is the principal bending axis most parallel to the
xc2 axis

12 Iy , area moment of inertia with respect to principal bending ye
axis [m4 ]

13 K, torsional stiffness constant with respect to ze axis at the shear
center [m4

/rad]. For a circular section only this is identical to
the polar moment of inertia.

14 kx shear factor for force in principal bending xe direction [-]
15 ky , shear factor for force in principal bending ye direction [-]
16 A, cross sectional area [m2]
17 θs , structural pitch about zc2 axis. This is the angle between the

xc2 -axis defined with the c2_def command and the main
principal bending axis xe. [deg]

18 xe, xc2-coordinate from C1/2 to center of elasticity [m]. The
elastic center is the point where radial force (in the z-direction)
does not contribute to bending around the x or y directions.

19 ye, yc2-coordinate from C1/2 to center of elasticity [m]. The
elastic center is the point where radial force (in the z-direction)
does not contribute to bending around the x or y directions.

- 25



26
-



Table 2: New HAWC2 anisotropic beam element structural data

Column
1 r, curved length distance from main_body node 1 [m]
2 m, mass per unit length [kg/m]
3 xm, xc2-coordinate from C1/2 to mass center [m]
4 ym, yc2-coordinate from C1/2 to mass center [m]
5 rix , radius of gyration related to elastic center. Corresponds to

rotation about principal bending xe axis [m]
6 riy , radius of gyration related to elastic center. Corresponds to

rotation about principal bending ye axis [m]
7 θs , structural pitch about zc2 axis. This is the angle between the

xc2 -axis defined with the c2_def command and the main
principal bending axis xe.

8 xe, xc2-coordinate from C1/2 to center of elasticity [m]. The
elastic center is the point where radial force (in the z-direction)
does not contribute to bending around the x or y directions.

9 ye, yc2-coordinate from C1/2 to center of elasticity [m]. The
elastic center is the point where radial force (in the z-direction)
does not contribute to bending around the x or y directions.

10 K11, element 1,1 of the Cross sectional stiffness matrix [N].
REMEMBER: the cross sectional stiffness matrix is given at the
elastic center rotated along the principal bending axes.

11 K12, element 1,2 of the Cross sectional stiffness matrix [N].
12 K13, element 1,3 of the Cross sectional stiffness matrix [N].
13 K14, element 1,4 of the Cross sectional stiffness matrix [Nm].
14 K15, element 1,5 of the Cross sectional stiffness matrix [Nm].
15 K16, element 1,6 of the Cross sectional stiffness matrix [Nm].
16 K22, element 2,2 of the Cross sectional stiffness matrix [N].
17 K23, element 2,3 of the Cross sectional stiffness matrix [N].
18 K24, element 2,4 of the Cross sectional stiffness matrix [Nm].
19 K25, element 2,5 of the Cross sectional stiffness matrix [Nm].
20 K26, element 2,6 of the Cross sectional stiffness matrix [Nm].
21 K33, element 3,3 of the Cross sectional stiffness matrix [N].
22 K34, element 3,4 of the Cross sectional stiffness matrix [Nm].
23 K35, element 3,5 of the Cross sectional stiffness matrix [Nm].
24 K36, element 3,6 of the Cross sectional stiffness matrix [Nm].
25 K44, element 4,4 of the Cross sectional stiffness matrix [Nm2].
26 K45, element 4,5 of the Cross sectional stiffness matrix [Nm2].
27 K46, element 4,6 of the Cross sectional stiffness matrix [Nm2].
28 K55, element 5,5 of the Cross sectional stiffness matrix [Nm2].
29 K56, element 5,6 of the Cross sectional stiffness matrix [Nm2].
30 K66, element 6,6 of the Cross sectional stiffness matrix [Nm2].

An example of a st anisotropic beam formulation input file can be seen on the next page.

- 27



28
-



9.2.3 Sub sub command - damping_distributed

In this command block, Rayleigh damping parameters can be defined as function of blade
length, hence damping parameters can be different at root of tip of a blade.

Obl. Command name Explanation
* nsec Number of input lines
* sec This command must be repeated nsec times.

1. r/R. Non-dim distance from node 1 to node N.
2. kx Stiffness proportional damping around x
3. ky Stiffness proportional damping around y
4. kz Stiffness proportional damping around z

9.2.4 Sub sub command – damping_posdef_distributed

In this command block, Rayleigh damping parameters can be defined as function of blade
length, hence damping parameters can be different at root of tip of a blade.

Obl. Command name Explanation
* nsec Number of input lines
* sec This command must be repeated nsec times.

1. r/R. Non-dim distance from node 1 to node N.
2. kx Stiffness proportional damping around x
3. ky Stiffness proportional damping around y
4. kz Stiffness proportional damping around z

9.2.5 Sub sub command – visualization_profile

This command block is used together with the command name visualization in the main
command block simulation. Default profiles are:

- Blade: An aerodynamic profile where thickness <95%, otherwise a cylinder. Dimensions as
specified in the aerodynamic blade layout file.

- Other bodies: Cylinder. The diameter is calculated from the mass and inertia specified in the
structural data

Obl. Command name Explanation
* type Profile type. (options are: “cylinder”, “cube” and “blade”)
* nsec Number of visualization sections
* sec This command must be repeated nsec times.

1. Distance from root [m or % or any other unit of choice
(scaled relative to the largest number)]
2. Diameter (cylinder), width (cube), chord (blade) [m]
3. (not needed for cylinder), height (cube) [m], thickness (blade)
[%]

9.3 Sub command - orientation

In this command block the orientation (regarding position and rotation) of every main_body
are specified.

9.3.1 Sub sub command - base

The orientation of a main_body to which all other bodies are linked – directly or indirectly.

- 29



Obl. Command name Explanation
* mbdy 1. Main_body name that is declared to be the base of all

bodies (normally the tower or foundation)
(old command name body
still usable)

* inipos Initial position in global coordinates.
1. x-pos [m]
2. y-pos [m]
3. z-pos [m]

♣ mbdy_eulerang Command that can be repeated as many times as needed.
All following rotation are given as a sequence of euler
angle rotations. All angle can be filled in (rotation order
x,y,z), but it is recommended only to give a value different
from zero on one of the angles and reuse the command if
several rotations are needed.
1. θx [deg]
2. θy [deg]

(old command name
body_eulerang still usable)

3. θz [deg]

♣ mbdy_eulerpar The rotation is given as euler parameters (quaternions)
directly (global coo).
1. r0
2. r1
3. r2

(old command name
body_eulerpar still usable)

4. r3

♣ mbdy_axisangle Command that can be repeated as many times as needed.
A version of the euler parameters where the input is a
rotation vector and the rotation angle of this vector.
1. x-value
2. y-value
3. z-value

(old command name
body_axisangle still usable)

4. angle [deg]

mbdy_ini_rotvec_d1 Initial rotation velocity of main body and all subsequent
attached bodies. A rotation vector is set up and the size
of vector (the rotational speed) is given. The coordinate
system used is main_body coo.
1. x-value
2. y-value
3. z-value
4. Vector size (rotational speed [rad/s])

♣ One of these commands must be present.

9.3.2 Sub sub command - relative

This command block can be repeated as many times as needed. However the orientation of
every main_body should be described.

30 -



Obl. Command name Explanation
* mbdy1 1. Main_body name to which the next main_body is

attached.
(old command name body1
still usable)

2. Node number of body1 that is used for connection.
(“last” can be specified which ensures that the last node
on the main_body is used).

* mbdy2 1. Main_body name of the main_body that is positioned
in space by the relative command.

(old command name body2
still usable)

2. Node number of body2 that is used for connection.
(“last” can be specified which ensures that the last node
on the main_body is used).

♣ mbdy2_eulerang Command that can be repeated as many times as needed.
All following rotation are given as a sequence of euler
angle rotations. All angle can be filled in (rotation order
x,y,z), but it is recommended only to give a value different
from zero on one of the angles and reuse the command
if several rotations are needed. Until a rotation command
is specified body2 has same coo. as body1. Rotations are
performed in the present body2 coo. system.
1. θx [deg]
2. θy [deg]
3. θz [deg]

(old command name
body2_eulerang still usable)

♣ mbdy2_eulerpar The rotation is given as euler parameters (quaternions)
directly (global coo).
1. r0
2. r1
3. r2

(old command name
body2_eulerpar still usable)

4. r3

♣ mbdy2_axisangle Command that can be repeated as many times as needed.
A version of the euler parameters where the input is a
rotation vector and the rotation angle of this vector. Until a
rotation command is specified main_body2 has same coo.
as main_body1. Rotations are performed in the present
main_body2 coo. system.
1. x-value
2. y-value
3. z-value

(old command name
body2_axisangle still
usable)

4. angle [deg]

- 31



mbdy2_ini_rotvec_d1 Initial rotation velocity of main body and all subsequent
attached bodies. A rotation vector is set up and the size
of vector (the rotational speed) is given. The coordinate
system used is main_body2 coo.
1. x-value
2. y-value
3. z-value

(old command name
body2_ini_rotvec_d1 still
usable)

4. Vector size (rotational speed [rad/s])

relpos Vector from coupling node of mbdy 1 to coupling node
of mbdy 2 in mbdy1 coo system in case a certain distance
between these nodes is required. (Default for overlapping
coupling nodes, this vector is (0,0,0))
1. x-value
2. y-value
3. z-value

9.4 Sub command - constraint

In this block constraints between the main_bodies and to the global coordinate system are
defined.

9.4.1 Sub sub command – fix0

This constraint fix node number 1 of a given main_body to ground.

Obl. Command name Explanation
* mbdy Name of main body that is fixed to ground at node 1

(old command name body
still usable)
disable_at Time to which constraint can be disabled

1. t0
enable_at Time to which constraint can be enabled

1. t0

9.4.2 Sub sub command – fix1

This constraint fix a given node on one main_body to another main_body’s node.

32 -



Obl. Command name Explanation
* mbdy1 1. Main_body name to which the next main_body is fixed.

2. Node number of main_body1 that is used for the
constraint. (“last” can be specified which ensures that the
last node on the main_body is used).

(old command name body1
still usable)

* mbdy2 1. Main_body name of the main_body that is fixed to
main_body1.
2. Node number of main_body2 that is used for the
constraint. (“last” can be specified which ensures that the
last node on the main_body is used).

(old command name body2
still usable)
disable_at Time to which constraint can be disabled

1. t0
enable_at Time to which constraint can be enabled

1. t0

9.4.3 Sub sub command – fix2

This constraint fix a node 1 on a main_body to ground in x,y,z direction. The direction that is
free or fixed is optional.

Obl. Command name Explanation
* mbdy 1. Main_body name to which node 1 is fixed.

(old command name body
still usable)

* dof Direction in global coo that is fixed in translation
1. x-direction (0=free, 1=fixed)
2. y-direction (0=free, 1=fixed)
3. z-direction (0=free, 1=fixed)

9.4.4 Sub sub command – fix3

This constraint fix a node to ground in tx ,ty ,tz rotation direction. The rotation direction that is
free or fixed is optional.

Obl. Command name Explanation
* mbdy 1. Main_body name to which node 1 is fixed.

2. Node number
(old command name body
still usable)

* dof Direction in global coo that is fixed in rotation
1. tx-rot.direction (0=free, 1=fixed)
2. ty-rot.direction (0=free, 1=fixed)
3. tz-rot.direction (0=free, 1=fixed)

9.4.5 Sub sub command – fix4

Constraint that locks a node on a body to another node in translation but not rotation with a
pre-stress feature. The two nodes will start at the defined positions to begin with but narrow the
distance until fully attached at time T.

- 33



Obl. Command name Explanation
* mbdy1 1. Main_body name to which the next main_body is fixed.

2. Node number of main_body1 that is used for the
constraint. (“last” can be specified which ensures that the
last node on the main_body is used).

(old command name body1
still usable)

* mbdy2 1. Main_body name of the main_body that is fixed to
body1.
2. Node number of main_body2 that is used for the
constraint. (“last” can be specified which ensures that the
last node on the main_body is used).

(old command name body2
still usable)
time 1. Time for the pre-stress process. Default=2sec
disable_at Time to which constraint can be disabled

1. t0
enable_at Time to which constraint can be enabled

1. t0

9.4.6 Sub sub command – bearing1

Constraint with properties as a bearing without friction. A sensor with same identification name
as the constraint is set up for output purpose.

Obl. Command name Explanation
* name 1. Identification name
* mbdy1 1. Main_body name to which the next main_body is fixed

with bearing1 properties.
2. Node number of main_body1 that is used for the
constraint. (“last” can be specified which ensures that the
last node on the main_body is used).

(old command name body1
still usable)

* mbdy2 1. Main_body name of the main_body that is fixed to
body1 with bearing1 properties.
2. Node number of main_body2 that is used for the
constraint. (“last” can be specified which ensures that the
last node on the main_body is used).

(old command name body2
still usable)

* bearing_vector Vector to which the free rotation is possible. The direction
of this vector also defines the coo towhich the output angle
is defined.
1. Coo. system used for vector definition
(0=global,1=mbdy1,2=mbdy2)
2. x-axis
3. y-axis
4. z-axis

disable_at Time to which constraint can be disabled
1. t0

enable_at Time to which constraint can be enabled
1. t0

34 -



9.4.7 Sub sub command – bearing2

This constraint allows a rotation where the angle is directly specified by an external dll action
command.

Obl. Command name Explanation
* name 1. Identification name
* mbdy1 1. Main_body name to which the next main_body is fixed

with bearing2 properties.
2. Node number of main_body1 that is used for the
constraint. (“last” can be specified which ensures that the
last node on the main_body is used).

(old command name body1
still usable)

* mbdy2 1. Main_body name of the main_body that is fixed to
main_body1 with bearing1 properties.
2. Node number of main_body2 that is used for the
constraint. (“last” can be specified which ensures that the
last node on the main_body is used).

(old command name body2
still usable)

* bearing_vector Vector to which the rotation occur. The direction of this
vector also defines the coo to which the output angle is
defined.
1. Coo. system used for vector definition
(0=global,1=mbdy1, 2=mbdy2)
2. x-axis
3. y-axis
4. z-axis

disable_at Time to which constraint can be disabled
1. t0

enable_at Time to which constraint can be enabled
1. t0

9.4.8 Sub sub command – bearing3

This constraint allows a rotation where the angle velocity is kept constant throughout the
simulation.

- 35



Obl. Command name Explanation
* name 1. Identification name
* mbdy1 1. Main_body name to which the next main_body is fixed

with bearing3 properties.
2. Node number of main_body1 that is used for the
constraint. (“last” can be specified which ensures that the
last node on the main_body is used).

(old command name body1
still usable)

* mbdy2 1. Main_body name of the main_body that is fixed to
body1 with bearing3 properties.
2. Node number of main_body2 that is used for the
constraint. (“last” can be specified which ensures that the
last node on the main_body is used).

(old command name body2
still usable)

* bearing_vector Vector to which the rotation occur. The direction of this
vector also defines the coo to which the output angle is
defined.
1. Coo. system used for vector definition
(0=global,1=body1,2=body2)
2. x-axis
3. y-axis
4. z-axis

* omegas 1. Rotational speed [rad/sec]

9.4.9 Sub sub command – bearing4

This constraint is a cardan shaft constraint. Locked in relative translation. Locked in rotation
around one vector and allows rotation about the two other directions.

36 -



Obl. Command name Explanation
* name 1. Identification name
* mbdy1 1. Main_body name to which the next main_body is fixed

with bearing3 properties.
2. Node number of main_body1 that is used for the
constraint. (“last” can be specified which ensures that the
last node on the main_body is used).

(old command name body1
still usable)

* mbdy2 1. Main_body name of the main_body that is fixed to
body1 with bearing3 properties.
2. Node number of main_body2 that is used for the
constraint. (“last” can be specified which ensures that the
last node on the main_body is used).

(old command name body2
still usable)

* bearing_vector Vector to which the rotation is locked. The rotation
angle and velocity can be outputted around the two
perpendicular directions.
1. Coo. system used for vector definition
(0=global,1=mbdy1, 2=mbdy2)
2. x-axis
3. y-axis
4. z-axis

9.4.10 Sub sub command – bearing5

This constraint is a spherical constraint. Locked in relative translation. Free in rotation around
all three axis, but only sensor on the main rotation direction.

Obl. Command name Explanation
* name 1. Identification name
* mbdy1 1. Main_body name to which the next main_body is fixed

with bearing3 properties.
2. Node number of main_body1 that is used for the
constraint. (“last” can be specified which ensures that the
last node on the main_body is used).

(old command name body1
still usable)

* mbdy2 1. Main_body name of the main_body that is fixed to
body1 with bearing3 properties.
2. Node number of main_body2 that is used for the
constraint. (“last” can be specified which ensures that the
last node on the main_body is used).

(old command name body2
still usable)

* bearing_vector Vector to which the rotation is locked. The rotation
angle and velocity can be outputted around the two
perpendicular directions.
1. Coo. system used for vector definition
(0=global,1=mbdy1, 2=mbdy2)
2. x-axis
3. y-axis
4. z-axis

- 37



10 DLL control

This block contains the possible Dynamic Link Library formats accessible for the user. The
Dll’s are mainly used to control the turbine speed and pitch, but since the DLL format is very
general, other use is possible too e.g. external loading of the turbine. Since the HAWC2 core
has no information about external stiffness or inertia we have experienced some issues with
the solver if the DLL includes high stiffness terms or especially large inertia terms. The new
type2_dll interface is slightly more stable related to the solver than the hawc_dll interface.

10.1 Main command block – dll

So far only one DLL format is available, which is the hawc_dll format listed below.

10.2 Sub command block – hawc_dll

In the HAWC_DLL format a subroutine within an externally written DLL is setup. In this
subroutine call two one-dimensional arrays are transferred between the HAWC2 core and the
DLL procedure. The first contains data going from the HAWC2 core to the DLL and the other
contains data going from the DLL to the core. It is very important to notice that the data are
transferred between HAWC2 and the DLL in every timestep and every iteration. The user should
handle the iteration inside the DLL.

Two more subroutines are called if they are present inside the dll file:

The first is an initialisation call including a text string written in the init_string in the commands
below. This could be the name of a file holding local input parameters to the data transfer
subroutine. This call is only performed once. The name of this subroutine is the same name
as the data transfer subroutine defined with the command dll_subroutine below with the extra
name ‘_init’, hence is the data transfer subroutine is called ‘test’, the initialisation subroutine
will be ‘test_init’.

The second subroutine is a message exchange subroutine, where messages written in the DLL
can be send to the HAWC2 core for logfile writing. The name of this subroutine is the same
name as the data transfer subroutine defined with the command dll_subroutine below with the
extra name ‘_message’, hence is the data transfer subroutine is called ‘test’, the initialisation
subroutine will be ‘test_message’.

The command block can be repeated as many times as desired. Reference number to DLL is
same order as listed, starting with number 1. However it is recommended to refer the DLL using
the name feature which in many cases can avoid confusion.

38 -



Obl. Command name Explanation
name 1. Reference name of this DLL (to be used with DLL

output commands)
* filename 1. Filename incl. relative path of the DLL

(example ./DLL/control.dll)
* dll_subroutine 1.Nameof subroutine inDLL that is addressed (remember

to specify the name in the DLL with small letters!)
* arraysizes 1. size of array with outgoing data

2. size of array with ingoing data
deltat 1. Time between dll calls. Must correspond to the

simulation sample frequency or be a multiple of the time
step size. If deltat=0.0 or the deltat command line is
omitted the HAWC2 code calls the dll subroutine at every
time step.

init_string 1. Text string (max 256 characters) that will be transferred
to the DLL through the subroutine ‘subroutine_init’.
Subroutine is the name given in in the command
dll_subroutine. No blanks can be included.

10.3 Sub command block – type2_dll

This dll interface is an updated slightly modified version of the hawc_dll interface. In the
TYPE2_DLL format a subroutine within an externally written DLL is setup. In this subroutine
call two one-dimensional arrays are transferred between the HAWC2 core and the DLL
procedure. The first contains data going from the HAWC2 core to the DLL and the other
contains data going from the DLL to the core. It is very important to notice that the data are
transferred between HAWC2 and the DLL in the first call of every timestep where the out-going
variables are based on last iterated values from previous time step. The sub command output
and actions are identical for both the hawc_dll and the type2_dll interfaces.

In the dll connected with using the type2_dll interface two subroutines should be present. An
initialization routine called only once before the time simulation begins, and an update routine
called in every time step. The format in the calling of these two subroutines are identical where
two arrays of double precision is exchanged. The subroutine uses the cdecl calling convention.

Obl. Command name Explanation
name 1. Reference name of this DLL (to be used with DLL

output commands)
* filename 1. Filename incl. relative path of the DLL

(example ./DLL/control.dll)
* dll_subroutine_init 1. Name of initialization subroutine in DLL that is

addressed (remember to specify the name in the DLL
with small letters!)

* dll_subroutine_update 1. Name of subroutine in DLL that is addressed at every
time step (remember to specify the name in the DLL with
small letters!)

* arraysizes_init 1. size of array with outgoing data in the initialization call
2. size of array with ingoing data in the initialization call

* arraysizes_update 1. size of array with outgoing data in the update call
2. size of array with ingoing data in the update call

deltat 1. Time between dll calls. Must correspond to the
simulation sample frequency or be a multiple of the time
step size. If deltat=0.0 or the deltat command line is
omitted the HAWC2 code calls the dll subroutine at every
time step.

- 39



when using the type2_dll interface the values transferred to the DLL in the initialization phase
is done using a sub command block called init. The commands for this subcommand block
is identical to the output subcommand explained below, but only has the option of having the
constant output sensor available. An example is given for a small dll that is used for converting
rotational speed between high speed and low speed side of a gearbox.:

begin dll;

begin type2_dll;

name hss_convert;

filename ./control/hss_convert.dll ;

arraysizes_init 3 1 ;

arraysizes_update 2 2 ;

begin init;

constant 1 2.0 ; number of used sensors - in this case only 1

constant 2 35.110; gearbox ratio

constant 3 35.110; gearbox ratio

end init;

begin output;

constraint bearing1 shaft_rot 2 only 2 ; rotor speed in rpm

constraint bearing1 shaft_rot 3 only 2 ; rotor speed in rad/s

end output;

;

begin actions;

; rotor speed in rpm * gear_ratio

; rotor speed in rad/s * gear_ratio

end actions;

end type2_dll;

end dll;

10.4 Sub command block – init

In this block type2_dlls can be initialized by passing constants to specific channels.

Obl. Command name Explanation
* constant Constants passed to the dll.

1. Channel number
2. Constant value

10.5 Sub command block – output

In this block the same sensors are available as when data results are written to a file with
the main block command output, see section 17. The order of the sensors in the data array is
continuously increased as more sensors are added.

10.6 Sub command block – actions

In this command block variables inside the HAWC2 code is changed depending of the speci-
fications. This command block can be used for the hawc_dll interface as well as the type2_dll
interface. An action commands creates a handle to the HAWC2 model to which a variable in
the input array from the DLL is linked.

!NB in the command name two separate words are present.

40 -



Obl. Command name Explanation
aero beta The flap angle beta is set for a trailing edge flap section (is

the mhhmagf stall model is used). The angle is positive
towards the pressure side of the profile. Unit is [deg]
1. Blade number
2. Flap section number

aero bem_grid_a 1. Number of points
body force_ext An external force is placed on the structure. Unit is [N].

1. body name
2. node number
3. componet (1 = Fx , 2 = Fy , 3 = Fz)

body moment_ext An external moment is placed on the structure. Unit is
[Nm].
1. body name
2. node number
3. component (1 = Mx , 2 = My , 3 = Mz)

body force_int An external force with a reaction component is placed on
the structure. Unit is [N].
1. body name for action force
2. node number
3. component (1 = Fx , 2 = Fy , 3 = Fz)
4. body name for reaction force
5. Node number

body moment_int An external moment with a reaction component is placed
on the structure. Unit is [N].
1. body name for action moment
2. node number
3. component (1 = Mx , 2 = My , 3 = Mz)
4. body name for reaction moment
5. Node number

body bearing_angle A bearing either defined through the new structure format
through bearing2 or through the old structure format
(spitch1=pitch angle for blade 1, spitch2=pitch angle for
blade 2,...). The angle limits are so far [0-90deg].
1. Bearing name

mbdy force_ext An external force is placed on the structure. Unit is [N].
1. main body name
2. node number on main body
3. component (1 = Fx , 2 = Fy , 3 = Fz), if negative number
the force is inserted with opposite sign.
4. coordinate system (possible options are: mbdy name,
”global”, ”local”). “local” means local element coo on
the inner element (on the element indexed 1 lower that the
node number). One exception if node number =1 then the
element nr. also equals 1.

- 41



mbdy moment_ext An external moment is placed on the structure. Unit is
[Nm].
1. main body name
2. node number on main body
3. component (1 = Mx , 2 = My , 3 = Mz), if negative
number the moment is inserted with opposite sign.
4. coordinate system (possible options are: mbdy
name,”global”,”local”). “local” means local element coo
on the inner element (on the element indexed 1 lower that
the node number). One exception if node number =1 then
the element nr. also equals 1.

mbdy force_int An internal force with a reaction component is placed on
the structure. Unit is [N].
1. main body name for action force
2. node number on main body
3. component (1 = Fx , 2 = Fy , 3 = Fz), if negative number
the force is inserted with opposite sign.
4. coordinate system (possible options are: mbdy name,
”global”, ”local”). “local” means local element coo on
the inner element (on the element indexed 1 lower that the
node number). One exception if node number =1 then the
element nr. also equals 1.
5. main body name for reaction force
6. Node number on this main body

mbdy moment_int An internal force with a reaction component is placed on
the structure. Unit is [Nm].
1. main body name for action moment
2. node number on main body
3. component (1 = Mx , 2 = My , 3 = Mz), if negative
number the moment is inserted with opposite sign.
4. coordinate system (possible options are: mbdy
name,”global”,”local”). “local” means local element coo
on the inner element (on the element indexed 1 lower that
the node number). One exception if node number =1 then
the element nr. also equals 1.
5. main body name for reaction moment
6. Node number on this main body

constraint bearing2
angle_deg

The angle of a bearing2 constraint is set. The angle limits
are so far [± 90 deg].
1. Bearing name

constraint bearing3
angle_deg

The angle of a bearing3 constraint is set. The angle limits
are so far [± 90 deg].
1. Bearing name

constraint bearing3 omegas The angular velocity of a bearing3 constraint is set.
1. Bearing name

body printvar Variable is just echoed on the screen. No parameters.
body ignore 1. Number of consecutive array spaces that will be ignored
mbdy printvar Variable is just echoed on the screen. No parameters.
mbdy ignore 1. Number of consecutive array spaces that will be ignored
general printvar Variable is just echoed on the screen. No parameters.
general ignore 1. Number of consecutive array spaces that will be ignored

42 -



stop_simulation Logical switch. If value is 1 the simulation will be stopped
and output written.

wind printvar Variable is just echoed on the screen. No parameters.
wind windspeed_u External contribution to wind speed in u-direction [m/s]
wind winddir External contribution to the wind direction (turb. box is

also rotated) [deg]
quake comp 1. Degree of freedom
ext_sys control 1. Name of external system

- 43



10.7 HAWC_DLL format example written in FORTRAN 90

subroutine test(n1,array1,n2,array2)

implicit none

!DEC$ ATTRIBUTES DLLEXPORT, ALIAS:’test’::test

integer*4 :: n1, & ! Dummy integer value containing the array size of array1

n2 ! Dummy integer value containing the array size of array2

real*4,dimension(10) :: array1 ! fixed-length array, data from HAWC2 to DLL

! � in this case with length 10

real*4,dimension(5) :: array2 ! fixed-length array, data from DLL to HAWC2

! � in this case with length 5

! Code is written here

end subroutine test

!-------------------------------------------------------

Subroutine test_init(string256)

Implicit none

!DEC$ ATTRIBUTES DLLEXPORT, ALIAS:’test_init’::test_init

Character*256 :: string256

! Code is written here

End subroutine test_init

!-------------------------------------------------------

Subroutine test_message(string256)

Implicit none

!DEC$ ATTRIBUTES DLLEXPORT, ALIAS:’test_message’::test_message

Character*256 :: string256

! Code is written here

End subroutine test_message

44 -



10.8 HAWC_DLL format example written in Delphi / Lazarus / Pascal

library test_dll;

type

array_10 = array[1..10] of single;

array_5 = array[1..5] of single;

ts = array[0..255] of char;

Procedure test(var n1:integer;var array1 : array_10;

var n2:integer;var array2 : array_5);stdcall;

// n1 is a dummy integer value containing the size of array1

// n2 is a dummy integer value containing the size of array2

begin

// Code is written here

end;

//----------------------------------------------------------

Procedure test_init(var string256:ts; length:integer);stdcall;

var

init_str:string[255]

begin

init_str=strpas(string256);

// Code is written here

writeln(init_str);

end;

//----------------------------------------------------------

Procedure test_message(var string256:ts; length:integer);stdcall;

var

message_str:string;

begin

// Code is written here

message_str:=’This is a test message’;

strPCopy(string256,message_str);

end;

exports test,test_init,test_message;

begin

writeln(’The DLL pitchservo.dll is loaded with succes’);

// Initialization of variables can be performed here

end;

end.

- 45



10.9 HAWC_DLL format example written in C

extern "C" void __declspec(dllexport) __cdecl test(int &size_of_Data_in,

float Data_in[], int &size_of_Data_out, float Data_out[])

{

for (int i=0; i<size_of_Data_out; i++) Data_out[i]=0.0;

//

printf("size_of_Data_in %d: \n",size_of_Data_in);

printf("Data_in %g: \n",Data_in[0]);

printf("size_of_Data_out %d: \n",size_of_Data_out);

printf("Data_out %g: \n",Data_out[0]);

}

extern "C" void __declspec(dllexport) __cdecl test_init(char* pString, int length)

{

// Define buffer (make room for NULL-char)

const int max_length = 256;

char buffer[max_length+1];

//

// Print the length of pString

printf("test_init::length = %d\n",length);

//

// Transfer string

int nchar = min(max_length, length);

memcpy(buffer, pString, nchar);

//

// Add NULL-char

buffer[nchar] = ’\0’;

//

// Print it...

printf("%s\n",buffer);

}

extern "C" void __declspec(dllexport) __cdecl test_message(char* pString, int max_length)

{

// test message (larger than max_length)

char pmessage[] = "This is a test message "

"and it continues and it continues and it continues "

"and it continues and it continues and it continues "

"and it continues and it continues and it continues "

"and it continues and it continues and it continues "

"and it continues and it continues and it continues "

"and it continues and it continues and it continues ";

// Check max length - transfer only up to max_length number of chars

int nchar = min((size_t)max_length, strlen(pmessage)); // nof chars to transfer

// (<= max_length)

memcpy(pString, pmessage, nchar);

//

// Add NULL-char if string space allows it (FORTRAN interprets a NULL-char as

// the end of the string)

if (nchar < max_length) pString[nchar] = ’\0’;

}

46 -



10.10 TYPE2_dll written in Delphi / Lazarus / Delphi

library hss_convert;

uses

SysUtils,

Classes,

Dialogs;

Type

array_1000 = array[0..999] of double;

Var

factor : array of double;

nr : integer;

{$R *.res}

procedure initialize(var InputSignals: array_1000;var OutputSignals: array_1000); cdecl;

var

i : integer;

begin

nr:=trunc(inputsignals[0]);

if nr>0 then begin

setlength(factor,nr);

for i:=1 to nr do

factor[i-1]:=Inputsignals[i];

outputsignals[0]:=1.0;

end else outputsignals[0]:=0.0;

end;

procedure update(var InputSignals: array_1000;var OutputSignals: array_1000); cdecl;

var

i : integer;

begin

for i:=0 to nr-1 do begin

OutputSignals[i] := InputSignals[i]*factor[i];

end;

end;

exports Initialize,Update;

begin

// Main body

end.

- 47



10.11 TYPE2_dll written in C

extern "C" void __declspec(dllexport) __cdecl initialize(dfloat *Data_in, dfloat *Data_out)

{ for (int i=0; i<8; i++) Data_out[0]+=Data_in[i];

}

extern "C" void __declspec(dllexport) __cdecl update(dfloat *Data_in, dfloat *Data_out)

{ for (int i=0; i<25; i++) Data_out[0]+=Data_in[i];

Data_out[8]=123;

}

48 -



10.12 TYPE2_DLL format example written in FORTRAN 90

subroutine initialize(array1,array2)

implicit none

!DEC$ ATTRIBUTES DLLEXPORT, C, ALIAS:’initialize’::initialize

real*8,dimension(1000) :: array1 ! fixed-length array, data from HAWC2 to DLL

! � in this case with length 1000

real*8,dimension(1) :: array2 ! fixed-length array, data from DLL to HAWC2

! � in this case with length 1

! Code is written here

end subroutine initialize

!-------------------------------------------------------

subroutine update(array1,array2)

implicit none

!DEC$ ATTRIBUTES DLLEXPORT, C, ALIAS:’update’::update

real*8,dimension(1000) :: array1 ! fixed-length array, data from HAWC2 to DLL

! � in this case with length 1000

real*8,dimension(100) :: array2 ! fixed-length array, data from DLL to HAWC2

! � in this case with length 100

! Code is written here

end subroutine initialize

- 49



11 Wind and Turbulence

11.1 Main command block -wind

Obl. Command name Explanation
* wsp 1. Mean wind speed in center [m/s]
* density 1. Density of the wind [kg/m3]
* tint Turbulence intensity [-].
* horizontal_input This command determines whether the commands above should be

understood as defined in the global coordinate system (with horizontal
axes) or the meteorological coordinates system (u,v,w) witch can be
tilted etc.
1. (0=meteorological, 1=horizontal)

* center_pos0 Global coordinates for the center start point of the turbulence box,
meteorological coordinate system etc. (default should the hub center)
1. xG [m]
2. yG [m]
3. zG [m]

* windfield_rotations Orientation of the wind field. The rotations of the field are performed as
a series of 3 rotations in the order yaw, tilt and roll. When all angles are
zero the flow direction is identical to the global y direction.
1. Wind yaw angle [deg], positive if the wind comes from the right side
when sitting in the nacelle and looking upwind (i.e. in the -yG direction).
2. Terrain slope angle [deg], positive when the wind comes from below.
3. Roll of wind field [deg], positive when the wind field is rotated
according to the turbulence u-component.

* shear_format Definition of the mean wind shear
1. Shear type
0=none. !This option sets the mean wind speed to zero ! ū (z) = 0
1=constant ū (z) = c,
2=logarithmic

ū(z) = u0
log −z

G
0 +z

M

r0

log −z
G
0

r0

3=power law

ū(z) = u0

(
−zG0 + zM

−zG0

)α
4=linear

ū(z) = u0
∂u
∂z

2. Parameter used togetherwith shear type (case of shear type: 0=dummy,
1=c, 2=r0, 3= a, 4=du/dz at center)

* turb_format 1. Turbulence format (0=none, 1=mann, 2=flex)
* tower_shadow_method 1. Tower shadowmodel (0=none, 1=potential flow–default, 2=jetmodel,

3=potential_2 (flow where shadow source is moved and rotated with
tower coordinates system). Please see section, page 68 for sub block
commands.

scale_time_start 1. Starting time for turbulence scaling [s]. Stop time is determined by
simulation length.

50 -



Obl. Command name Explanation
wind_ramp_factor Command that can be repeated as many times as needed.

The wind_ramp_factor is used to calculate a factor that is multiplied to
thewind speed vectors. Can be used tomake troublefree cut-in situations.
Linear interpolation is performed between t0 and tstop.
1. time start, t0
2. time stop, tstop
3. factor at t0
4. factor at tstop

wind_ramp_abs Command that can be repeated as many times as needed.
The wind_ramp_abs is used to calculate a wind speed that is added to the
wind speed u-component. Can be used to make wind steps etc. Linear
interpolation is performed between t0 and tstop.
1. time start, t0
2. time stop, tstop
3. wind speed at t0
4. wind speed at tstop

user_defined_shear 1. Filename incl. relative path to file containing user defined shear factors
(example ./data/shear.dat)

user_defined_-
shear_turbulence

1. Filename incl. relative path to file containing user defined shear
turbulence factors (example ./data/shearturb.dat)

met_mast_wind 1. Filename incl. relative path to file containing time series of wind
components in meteorological coordinates. The file should have four
columns of data:
time, vu , vv and vw .

iec_gust Gust generator according to IEC 61400-1
1. Gust type
‘eog’ = extreme operating gust

u (z, t) = u (z, t) − 0.37A sin
(

3π(t−t0)
T

) (
1 − cos 2π(t−t0)

T

)
‘edc’ = extreme direction change

θ (t) = 0.5φ0

(
1 − cos

(
π(t−t0)

T

))
‘ecg’ = extreme coherent gust

u (z, t) = u (z, t) + 0.5A
(
1 − cos

(
π(t−t0)

T

))
‘ecd’ = extreme coherent gust with dir. change

u (z, t) = u (z, t) + 0.5A
(
1 − cos

(
π(t−t0)

T

))
θ (t) = 0.5φ0

(
1 − cos

(
π(t−t0)

T

))

- 51



Obl. Command name Explanation
‘ews’ = extreme wind shear

d =
√
y2
M + z2

M

u(z, t) = u(z, t) + d A
(
1 − cos

(
2π(t−t0)

T

))
cos

(
atan2

(
yM ,−zM

)
− φ0

)
even though the ‘ews’ expressions do not match the expressions in the
standard completely, it gives identical results provided a mutual power
law shear is used and the A parameter is set to

A =
2.5 + 0.2βσ1

(
D
Λ1

) 1
4

D
and the parameter ϕ0 is set to 0, 90, 180, 270 [deg] respectively
2. Amplitude A [m/s]. For the ‘eog’, ‘edc’, ‘ecd’ this corresponds to the
parameter ‘Vgust’, ‘0’, ‘Vcg’ respectively, in the IEC61400-1 standard.
3. Angle ϕ0 [deg]
4. Time start, t0 [s]
5. Duration T [s]

11.2 Sub command block - mann

Block that must be included if the mann turbulence format is chosen. Normal practice is to use
all three turbulence components (u,v,w) but only the specified components are used. In 2008 the
turbulence generator was linked to the code so mannturbulence can be created without using
external software. The command create_turb_parameters will search for turbulence files with
names given below, but if these are not found the turbulence will be created.

A short explanation of the parameters L and αε
2
3 and its relation to the IEC61400-1 ed. 3

standard is given:

The fundamentals of the Mann model is isotropic turbulence in neutral atmospheric conditions.
The energy spectrum is given based on the Von Karman spectrum (1). In isotropic turbulence,
the properties of turbulence like variance and turbulent length scale is identical for all three
direction corresponding to vortex structures being circular.

E(k) = αε
2
3 L

5
3

(Lk)4(
1 + (Lk)2

) 17
6

(1)

The relation between wave number k and frequency f is related through the mean wind speed
Ū.

k =
2π f
Ū

(2)

However, atmospheric conditions are not isotropic and the vortex structures become more
elliptic in shape with longer length scale and higher variance level in the u direction. In the
Mann model, this is accounted for using rapid distortion theory quantified through a shear
blocking factor Γ. A Γ parameter of 0 corresponds to isotropic turbulence, whereas a higher
Γ value is used for non-isotropic turbulence. The relation between non-isotropic and isotropic
properties as function of Γ can be seen in Figure 5. It is normally recommended to use Γ = 3.9
for normal atmospheric conditions. A length scale of L = 0.7Λ1is recommended for normal
conditions.Λ1is defined as thewavelengthwhere the longitudinal power spectral density is equal
to 0.05. According to the IEC61400-1 the wavelength Λ1 shall be considered as a constant of
42m (above a height of 60m). In the Mann generation of turbulence a length scale L has to be
used. This is the length scale of the Von Karman spectrum (1) and therefore different than the

52 -



length scale used in the Kaimal formulation (3). The energy spectrum of Kaimal is formulated

E( f ) = σ2 4L/Ū(
1 + 6 f L/Ū

) 5
3

(3)

where the input parameters are given based on the table values in

Figure 4: Information about Kaimal length scales and standard deviation ratio from the
IEC61400-1

Figure 5: Turbulence characteristics compared to isotropic conditions as function of gamma
parameter, Mann.. Left: Relation between variance is changed for higher shear distortions.
Right: The relation between length scales are also changed for non-isotropic turbulence. It is
recommended to use Γ = 3.9 for normal atmospheric conditions. This is also the requirement
in the IEC61400-1 standard. Isotropic conditions are obtained using Γ=0.

The result of using Γ = 3.9 is that the structure of the turbulence corresponds to the normal
atmospheric conditions, but the actual level of turbulence is also affected as seen in Figure 4.
It is not straight forward to give the exact analytical relationship between the input parameter
αε

2
3 and the final longitudinal variance and it is therefore very practical to introduce a turbulence

scaling factor SF. This turbulence scaling factor is calculated based on the actual variance level
in the box (normally extracted in the center of the box of longitudinal turbulence) and the target
variance σ2

target based on the requested turbulence intensity σ = Ti Ū. In this case of rescaling,

which is the normal usage, the input value for αε
2
3 can be any arbitrary value except for zero.

SF =

√
σ2
target

σ2 (4)

The scale factor is to be multiplied to every values in the turbulence box for all the u,v and w
directions. This is done automatically inside HAWC2.

- 53



Obl. Command name Explanation
create_turb_parameters With this command, the code will search for turbulence files with

names given below, but if these are not found the turbulence will
be created based on the given parameters.
1. Length scale L (normally L=29.4)
2. αε2/3 (when rescaling applied, 1.0 is normal practice)
3. γ (3.9 for neutral atmospheric conditions)
4. Seed number (any integer will do)
5. High frequency compensation (1=point velocity only represent
local value which is closest to anemometer measurements,
recommended in most cases, 0=point velocity represents average
velocity in grid volume)

filename_u 1. Filename incl. relative path to file containing mann turbulence
u-component
(example ./turb/mann-u.bin)

filename_v 1. Filename incl. relative path to file containing mann turbulence
v-component
(example ./turb/mann-v.bin)

filename_w 1. Filename incl. relative path to file containing mann turbulence
w-component
(example ./turb/mann-w.bin)

* box_dim_u 1. Number of grid points in u-direction
2. Length between grid points in u-direction [m]

* box_dim_v 1. Number of grid points in v-direction
2. Length between grid points in v-direction [m]

* box_dim_w 1. Number of grid points in w-direction
2. Length between grid points in w-direction [m]

std_scaling Ratio between standard deviation for specified component related
to turbulence intensity input specified in main wind command
block.
If the std_scaling command is omitted, the SF is determined
based on the u-variance, the SF for v and w direction are kept
equal to u-direction (recommended)
1. Ratio to u-direction (default=1.0)
2. Ratio to v-direction (default=0.8)
3. Ratio to w-direction (default=0.5)

dont_scale If this command is used the normal scaling to ensure the specified
turbulence intensity is bypassed.
1. (0=scaling according to specified inputs – default, 1=raw
turbulence field used without any scaling)

factor_scaling If this command is used constant, scaling factors are applied.
1. Scaling factor in u-direction, Fu

2. Scaling factor in v-direction, Fv

3. Scaling factor in w-direction, Fw

11.3 Sub command block - flex

Block that must be included if the flex turbulence format is chosen.

Obl. Command name Explanation
* filename_u 1. Filename incl. relative path to file containing flex turbulence

u-component
(example ./turb/flex-u.int)

54 -



Obl. Command name Explanation
* filename_v 1. Filename incl. relative path to file containing flex turbulence

v-component
(example ./turb/flex-v.int)

* filename_w 1. Filename incl. relative path to file containing flex turbulence
w-component
(example ./turb/flex-w.int)

std_scaling Ratio between standard deviation for specified component related
to turbulence intensity input specified in main wind command
block.
1. Ratio to u-direction (default=1.0)
2. Ratio to v-direction (default=0.7)
3. Ratio to w-direction (default=0.5)

11.4 File description of a user defined shear

In this file a user defined shear used instead, or in combination with one of the default shear
types (logarithmic, exponential...). When the user defined shear is used the name and location
of the datafile must be specified with the wind – user_defined_shear command. This command
specifies the location of the file and activates the user defined shear. If this shear is replacing
the original default shear the command wind – shear_format must be set to zero!

Only one shear can be present in a single file. The shear describes the mean wind profile of the
u, v and w component of a vertical cross section at the rotor. The wind speeds are normalized
with the mean wind speed defined with the command wind – wsp.

Line number Description
1 Headline (not used by HAWC2)
2 Information of shear v-component.

#1 is the number of columns, NC
#2 is the number of rows, NR

3 Headline (not used by HAWC2)
4..+NR Wind speed in v-direction, normalized with u-mean.

# NC columns
1 Headline (not used by HAWC2)
+1..+NR Wind speed in u-direction, normalized with u-mean.

# NC columns.
1 Headline (not used by HAWC2)
+1..+NR Wind speed in w-direction, normalized with u-mean.

# NC columns
1 Headline (not used by HAWC2)
+1..+NC Horizontal position of grid points (meteorological coo)
1 Headline (not used by HAWC2)
+1..+NR Vertical position of grid points (meteorological coo)

11.5 Example of user defined shear file

# User defined shear file

3 4 # nr_v, nr_w array sizes

# shear_v component, normalized with U_mean

0.0 0.0 0.0

0.0 0.0 0.0

0.0 0.0 0.0

- 55



0.0 0.0 0.0

# shear_u component, normalized with U_mean

1.0 1.0 1.0

1.0 1.0 1.0

1.0 1.0 1.0

1.0 1.0 1.0

# shear_w component, normalized with U_mean

0.0 0.0 0.0

0.0 0.0 0.0

0.0 0.0 0.0

0.0 0.0 0.0

# v coordinates

-50.0

0.0

50.0

# w coordinates (zero is at ground level)

0.0

60.0

100.0

200.0

11.6 Sub command block - wakes

Block that must be included if the Dynamic Wake Meandering model is used to model the
wind flow from one or more upstream turbines. In order to make the model function, two Mann
turbulence boxes must be used. One for the meandering turbulence – which is a box containing
atmospheric turbulence, but generated with a course resolution in the v,w plane (grid size of 1
rotor diameter). It is important that the turbulence vectors at the individual grid points represent
a mean value covering a grid cube. It is also important that the total size of the box is large
enough to cover the different wake sources including their meandering path. The resolution in
the u-direction should be as fine a possible. The used length scale should correspond to normal
turbulence condition. The other turbulence box that is needed is a box representing the micro
scale turbulence from the wake of the upstream turbine itself. The resolution of this box should
be fine (e.g. 128x128 points) in the v,w plane which should only cover 1 rotor diameter. The
resolution in the u direction should also be fine, but a short length of the box (e.g. 2.5Diameter)
is OK, since the turbulence box is reused. The length scale for this turbulence is significantly
shorter than for the other boxes since it represents turbulence from tip and root vortices mainly.
A length scale of 1/16 rotor diameter seems appropriate.

The two turbulence boxed are included by the following sub commands

begin mann_meanderturb;

(parameters are identical to the normal Mann turbulence box, see above)

end mann_meanderturb;

begin mann_microturb;

(parameters are identical to the normal Mann turbulence box, see above)

end mann_microturb;

The rest of the wake commands are given in the following table.

Obl. Command name Explanation
* nsource 1. Number of wake sources. If 0 is used the wake module is

by-passed (no source positions can be given in this case).

56 -



Obl. Command name Explanation
* source_pos Command that must be repeated nsource times. This gives the

position of the wake source (hub position) in global coordinates.
Wake source position given for down stream turbines are however
not used in the simulations since they don’t affect the target
turbine.
1. x-pos [m]
2. y-pos [m]
3. z-pos [m]

* op_data Operational conditions for the wake sources. This command can
be repeated nsource times to independently set the operation
data of individual sources. If op_data appears once, the same
operation data is used for all sources.
1. Rotational speed [rad/s]
2. Collective pitch angle [deg]. Defined positive according to the
blade root coo, with z-axis from root towards tip.

ble_parameters Parameters used for the BLEmodel used for developing the wake
deficit due to turbulent mixing.
1. k1 [-], default=0.10
2. k2 [-], default=0.008
3. clean-up parameter (0=intermediate files are kept,
1=intermediate files are deleted), default=1

microturb_factors Parameters used for scaling the added wake turbulence according
to the deficit depth and depth derivative.
1. km1 [-], factor on deficit depth, default=0.60
2. km2 [-], factor on depth derivative, default=0.25

multiple_deficit_method Command that is used for choosing the best approach for handling
multiple deficit
1. method (1=MAX operator (default), 2=Direct summation)
In general it is recommended to use the MAX operator when the
ambient free wind speed is below rated and the direct summation
approach above rated wind speed.

tint_meander Turbulence intensity of the meander turbulence box. If this
command is not used then the default turbulence intensity from
the general wind commands is used (normal use)
1. Turbulence intensity [-]

use_specific_deficit_file File with the deficits used in the correct downstream distance is
used instead of the build in deficit generator. The wind speed
deficits are non-dim with the mean wind speed.
1. Filename incl. path (e.g. ./data/deficit.data)

write_ct_cq_file File including the local axial and tangential forces (non-dim) as
function of blade radius is written.
1. Filename incl. path (e.g. ./res/ct_cq.data)

write_final_deficits File with the deficits used in the correct downstream distance is
written. The windspeed deficits are non-dim with the mean wind
speed.
1. Filename incl. path (e.g. ./res/ct_cq.data)

11.7 File description of a user defined wake deficit file

When another flow solve has been used to find the non-dim turbulence deficit, eg. using an
actuator disc approach, this can replace the deficit otherwise calculated internally. This method
cannot be used together with multiple deficits as only one deficit can be read.

- 57



Line number Description
1 #1 Any single character (eg. #)

#2 The number of rows (NR)
#3 (optional) The rotor diameter. If not included, the diameter of
the reference turbine is used.

2..+NR Deficit non-dim with ambient free mean wind speed.
#1 Radius (non-dim with rotor radius)
#2 Deficit (non-dim with free mean wind speed). In the free

11.8 Example of user defined wake deficit file

# 121 178.0

0.000000000E+00 8.276891200E-01

2.500000000E-02 8.486243600E-01

5.000000000E-02 8.809613720E-01

7.500000000E-02 9.007844070E-01

1.000000000E-01 8.957724550E-01

1.250000000E-01 8.660702830E-01

1.500000000E-01 8.303410890E-01

1.750000000E-01 8.044380440E-01

2.000000000E-01 7.895593800E-01

2.250000000E-01 7.786515560E-01

2.500000000E-01 7.691674220E-01

2.750000000E-01 7.618372330E-01

3.000000000E-01 7.572012850E-01

3.250000000E-01 7.550918200E-01

3.500000000E-01 7.542137030E-01

3.750000000E-01 7.518827010E-01

4.000000000E-01 7.456746090E-01

4.250000000E-01 7.357259740E-01

4.500000000E-01 7.250309980E-01

4.750000000E-01 7.168460970E-01

5.000000000E-01 7.119492260E-01

5.250000000E-01 7.088296670E-01

5.500000000E-01 7.057605130E-01

5.750000000E-01 7.021459650E-01

6.000000000E-01 6.983228280E-01

6.250000000E-01 6.947171830E-01

6.500000000E-01 6.913423360E-01

6.750000000E-01 6.879199230E-01

7.000000000E-01 6.842943230E-01

7.250000000E-01 6.806519720E-01

7.500000000E-01 6.773263690E-01

7.750000000E-01 6.744196220E-01

8.000000000E-01 6.716445590E-01

8.250000000E-01 6.684818930E-01

8.500000000E-01 6.644046880E-01

8.750000000E-01 6.592242170E-01

9.000000000E-01 6.529686490E-01

9.250000000E-01 6.445576730E-01

9.500000000E-01 6.324201240E-01

9.750000000E-01 6.173566910E-01

1.000000000E+00 5.982423590E-01

1.028634580E+00 5.679249380E-01

58 -



1.058116050E+00 5.982195030E-01

1.088469450E+00 7.292761710E-01

1.119720570E+00 9.095984580E-01

1.151895960E+00 1.014958390E+00

1.185022960E+00 1.022114240E+00

1.219129700E+00 1.017341600E+00

...

8.903031630E+00 1.000285950E+00

9.165402860E+00 1.000213540E+00

9.435533870E+00 1.000143160E+00

9.713654150E+00 1.000066170E+00

1.000000000E+01 1.000018010E+00

11.9 Sub command block – tower_shadow_potential

Block that must be included if the potential flow tower shadow model is chosen.

Obl. Command name Explanation
* tower_offset The tower shadow has its source at the global coordinate z axis.

The offset is the base point for section 1
1. Offset value (default=0.0)

* nsec Command that needs to present before the radius commands.
1. Number of datasets specified by the radius command.

* radius Command that needs to be listed nsec times.
1. z coordinate [m]
2. Tower radius at z coordinate [m]

11.10 Sub command block – tower_shadow_jet

Block that must be included if the model based on the boundary layer equations for a jet is
chosen. This model is especially suited for downwind simulations.

Obl. Command name Explanation
* tower_offset The tower shadow has its source at the global coordinate z axis.

The offset is the base point for section 1
1. Offset value (default=0.0)

* nsec Command that needs to present before the radius commands.
1. Number of datasets specified be the radius command.

* radius Command that needs to be listed nsec times.
1. z coordinate [m]
2. Tower radius at z coordinate [m]
3. Cd drag coefficient of tower section (normally 1.0 for circular
section, but this depends heavily on the reynold number)

11.11 Sub command block – tower_shadow_potential_2

Block that must be included if the tower shadow method 3 is chosen. This potential model is
principally similar to the potential flow model described previously but differs in the way that
the shadow source is moved and rotated in space as the tower coordinate system is moving and
rotating. It is also possible to define several tower sources e.g. if the tower is a kind of tripod or
quattropod. Just include more tower_shadow_potential_2 blocks if more sources are required.

- 59



The coordinate system that the shadow method is linked to is specified by the user, e.g. the
mbdy coordinate from the tower main body. To make sure that the tower source model is always
linked in the same way as the tower (could be tricky since the tower is fully free to be specified
along the x,y or z axis or a combination) the base coordinate system for the shadow model is
identical to the coordinates system obtained by the local element coordinates, where the z axis
is always pointing from node 1 towards node 2. This is the reason that the tower radius input
has to specified with positive z-values, see below.

Obl. Command name Explanation
* tower_mbdy_link Name of the main body to which the shadow source is linked.

1. mbdy name
* nsec Command that needs to present before the radius commands.

1. Number of datasets specified by the radius command.
* radius Command that needs to be listed nsec times.

1. z coordinate [m] (allways positive!)
2. Tower radius at z coordinate [m]

11.12 Sub command block – tower_shadow_jet_2

Block that must be included if the tower shadowmethod 4 is chosen. This jet model is principally
similar to the jet model described previously but differs in the way that the shadow source is
moved and rotated in space as the tower coordinate system is moving and rotating. It is also
possible to define several tower sources e.g. if the tower is a kind of tripod or quattropod. Just
include more tower_shadow_jet_2 blocks if more sources are required.

The coordinate system that the shadow method is linked to is specified by the user, e.g. the
mbdy coordinate from the tower main body. To make sure that the tower source model is always
linked in the same way as the tower (could be tricky since the tower is fully free to be specified
along the x,y or z axis or a combination) the base coordinate system for the shadow model is
identical to the coordinates system obtained by the local element coordinates, where the z axis
is always pointing from node 1 towards node 2. This is the reason that the tower radius input
has to specified with positive z-values, see below.

Obl. Command name Explanation
* tower_mbdy_link Name of the main body to which the shadow source is linked.

1. mbdy name
* nsec Command that needs to present before the radius commands.

1. Number of datasets specified by the radius command.
* radius Command that needs to be listed nsec times.

1. z coordinate [m]
2. Tower radius at z coordinate [m]
3. Cd drag coefficient of tower section (normally 1.0 for circular
section, but this depends heavily on the reynold number)

11.13 Sub command block – turb_export

With this sub command block, a mann format turbulence box including information from shear,
wakes, tower shadow etc. is written. Same data point positions are used as specified in the
turbulence module including the parameters specified for the originally used mann turbulence
box.

Obl. Command name Explanation
* filename_u Filename of turbulence box with axial turbulence

60 -



Obl. Command name Explanation
1. File name

* filename_v Filename of turbulence box with lateral turbulence
1. File name

* filename_w Filename of turbulence box with vertical turbulence
1. File name

samplefrq 1. Sample frequency
time_start 1. Time at which the the turbulence recording will start
nsteps 1. Number of steps between output
box_dim_v 1. Number of points in v-direction

2. Distance between points in v-direction
box_dim_w 1. Number of points in w-direction

2. Distance between points in w-direction

- 61



12 Aerodynamics

12.1 Main command block - aero

This module set up parameters for the aerodynamic specification of the rotor. It is also possible
to submit aerodynamic forces to other structures as example the tower or nacelle, but see chapter
(Aerodrag) regarding this. The module can be added as many times as requested if multiple
aerodynamic rotors are needed.

Obl. Command name Explanation
(*) name Name of rotor (in case of multiple rotors defined this is

obligatory.)
* nblades Must be the first line in aero commands!

1. Number of blades
* hub_vec Link to main-body vector that points downwind from the rotor

under normal conditions. This corresponds to the direction from
the pressure side of the rotor towards the suction side where the
coordinate system is normally taken from the main shaft system..
1. mbdy name or ‘old_input’ if old_htc_structure format is
applied.
2. mbdy coo. component (1=x, 2=y, 3=z). If negative the opposite
direction used. Not used together with old_htc_structure input
(specify a dummy number).
3. Node number (optional). Node number on mbdy where rotor
center is located. ‘last’ can also be used (default if no value is
present).

* link Linker between structural blades and aerodynamic blades. There
must be same number of link commands as nblades!
1. blade number
2. link chooser – options are
- mbdy_c2_def (used with new structure format)
- blade_c2_def (used with old structure format, see description
below in this chapter)
3. mbdy name (with new structure format), not used to anything
with old structure format.

* ae_filename 1. Filename incl. relative path to file containing aerodynamic
layout data (example ./data/hawc2_ae.dat)

* pc_filename 1. Filename incl. relative path to file containing profile
coefficients (example ./data/hawc2_pc.dat)

* induction_method 1. Choice between which induction method that shall be used
(0=none, 1=normal BEM dynamic induction, 2= Near Wake
induction method, 3= VAWT)

* aerocalc_method 1. Choice between which aerodynamic load calculation method
that shall be used. (0=none, 1=normal)

aerosections Number of aerodynamic calculation points at a blade.
The distribution is performed automatically using a cosine
transformation which gives closest spacing at root and tip.
1. Number of points at each blade.

aero_distribution 1. Distribution method of aerodynamic calculation points.
Options are:
- “default” number. The distribution is performed automatically
using npoints position with a cosine transformation which gives
closest spacing at root and tip.

62 -



Obl. Command name Explanation
- “ae_file” set. The distribution is given with same spacing as
values in the ae_file with set number set..

* ae_sets Set number fromae_filename that is linked to blade 1,2,...,nblades
1. set for blade number 1
2. set for blade number 2
.
.
.
nblades. set for blade number nblades

* tiploss_method 1. Choice between which tip-loss model that shall be used
(0=none, 1=prandtl (default))

* dynstall_method 1. Choice between which dynamic stall model that shall be
used (0=none, 1=Stig Øye method, 2=MHH Beddoes method,
3=Gaunaa-Andersen method with Deformable Trailing Edge
Flap’s)

3d_correct_method Airfoil Cl values from the pc_file is modified for 3D effects.
1. Correctionmethod (1=Snelmethod for correction of Cl values)

external_bladedata_dll Blade structural data are found in an external encrypted dll. If
this command is present the following command lines shall not
be present (ae_filename, pc_filename and ae_sets).
1. Company name (that has been granted a password, eg. dtu).
2. Password for opening this specific dll, eg. test1234
3. path and filename for the dll. eg. ./data/encr_blade_data.dll

output_profile_coef_filename Interpolated profile coefficients at all aerodynamic calculation
points are written into a data file. This command can not be used
in combination with encrypted_profile_coef_filename.
1. path and filename for the dll. eg. ./res/aero_profiles.dat

12.2 Sub command block – dynstall_so

Block that may be included if the Stig Øye dynamic stall method is chosen. If not included
defaults parameters are automatically used.

Obl. Command name Explanation
dclda 1. Linear slope coefficient for unseparated flow (default=6.28)
dcldas 1. Linear slope coefficient for fully separated flow (default=3.14)
alfs 1. Angle of attack [deg] where profile flow is fully separated.

(default=40)
alrund 1. Factor used to generate synthetic separated flow Cl values

(default=40)
taufak 1. Time constant factor in first order filter for F function

(default=10.0). Internally used as tau=taufak*chord*vrel

12.3 Sub command block – dynstall_mhh

Block that may be included if the MHH Beddoes dynamic stall method is chosen (see Risø
report 1354(en)). If not included defaults parameters are automatically used.

Obl. Command name Explanation
a1 1. Coefficients of the exponential potential flow step response ap-

proximation: Phi(s)=1-A1*exp(-b1*s)-A2*exp(-b2*s). (default=
0.165)

- 63



Obl. Command name Explanation
a2 1. Coefficients of the exponential potential flow step response ap-

proximation: Phi(s)=1-A1*exp(-b1*s)-A2*exp(-b2*s). (default=
0.335)

b1 1. Coefficients of the exponential potential flow step response ap-
proximation: Phi(s)=1-A1*exp(-b1*s)-A2*exp(-b2*s). (default=
0.0455)

b2 1. Coefficients of the exponential potential flow step response ap-
proximation: Phi(s)=1-A1*exp(-b1*s)-A2*exp(-b2*s). (default=
b2=0.300)

update Choice between update methods:
1. 1 (default)=>update aerodynamics all iterations all timesteps;
0=>only update aerodynamics first iteration each new timestep

taupre 1. Non-dimensional time-lag parametersmodeling pressure time-
lag. Default value =1.5

taubly 1. Non-dimensional time-lag parameters modeling boundary
layer time-lag. Default value=6.0

only_potential_model 1. 0(default)=>run full MHH beddoes model; 1=>Potential flow
model dynamics superposed to steady force coefficients;

max_cl_attached 1. Maximum value of lift coefficient for attached flow.

12.4 Sub command block – dynstall_ateflap

This sub-block should be included if the ATEFlap dynamic stall model is chosen (dyn-
stall_method number 3). The dynamic stall model is similar to the MHH model, expanded to
account for steady and dynamic effects of trailing edge flap deflections; the model is described
in L. Bergami and M. Gaunaa, ATEFlap Aerodynamic model, a dynamic stall model including
the effects of trailing edge flap deflection (Risoe-R-1792(EN), Risoe DTU, February 2012). The
model requires a .ds input file containing pre-processed steady aerodynamic data for the blade
sections containing a flap (see following paragraphs for the file specifications). Sections without
any flap are attributed steady input data according to the aerodynamic layout specified in the
ae_filename.

Obl. Command name Explanation
* flap Mandatory command to define a flap section. The flap is defined

on all the blades of the rotor. Command syntax:
1. Radius r_start [in m]. Starting point of flap section.
2. Radius r_end [in m]. Ending point of flap section (should be >
r_start).
3. Filename incl. relative path to .ds file containing pre-processed
aerodynamic steady input data. See .ds file specifications in the
following paragraph.
N.B. The location along the blade refer to the ‘stretched’ blade,
distances are given along the half-chord line (as the layout in
ae_file ). A maximum of 99 flap sections can be defined.

ais Coefficients for the indicial response exponential function:
1. A1 (default= 0.1784)
2. A2 (default=0.07549)
3. A3 (default=0.3933)
Default coefficients describe the step response of a NACA64-418
profile, where t/c=0.18.

bis Coefficients of the exponential potential flow step response
approximation:
1. B1 (default= 0.8000)

64 -



Obl. Command name Explanation
2. B2 (default= 0.01815)
3. B3 (default= 0.1390)
Default coefficients describe the step response of a NACA64-418
profile, where t/c=0.18.

taupre 1. Non-dimensional time-lag parameters modelling pressure
time-lag. Default value =1.5

taubly 1. Non-dimensional time-lag parameters modelling boundary
layer time-lag. Default value=6.0

only_potential_model 1. 0(default)=>run full ATEFlap model;
1=>Potential flow model dynamics superposed to steady force
coefficients;

update Choice between update methods:
1. 1 (default)=>update aerodynamics all iterations all timesteps;
0=>only update aerodynamics first iteration each new timestep

hystar 1. Camberline coef. (default= -4.675844E-003)
fylestar 1. Camberline coef. (default= +4.155446E-004)
fdydxle 1. Camberline coef. (default= +7.236104E-003)
gdydxle 1. Camberline coef. (default= +3.309147E-003)

The camber line coefficients describe the camber line deformation shape induced by the flap; they
are computed according to the thin-airfoil model described in Gaunaa’s Wind Energy journal
article Unsteady two-dimensional potential-flow model for thin variable geometry airfoils.
Hystar and fylestar are dimensionless parameters corresponding to the shape integrals Hy and
FyLE normalized by the half-chord length. The default coefficients refer to a 10% chord length
flap with a continuous deformation shape, describing a circular arc, whose chord forms an angle
of 1 degree with the horizontal axis.

12.5 Sub command block – aero_noise

If this command block is used, aero-acoustic calculations are performed. The blade is discretized
spanwise into elementary blade sections corresponding to the aerodynamic calculation points of
the main command block – aero, i.e. as defined by the command ‘aerosections’. Aerodynamic
noise is calculated for each of these blade sections and subsequently added at the observer
location(s) assuming incoherent noise sources. Only geometrical spreading is considered for
the noise propagation between blade sections and observer. Details of the implementation for
the turbulent inflow, trailing edge and stall noise models can be found in Bertagnolio et al,
A combined aeroelastic-aeroacoustic model for wind turbine noise: verification and analysis
of field measurements, Wind Energy (20), 2017. As for the loading-thickness noise model,
the implementation is described in Bertagnolio et al, A temporal wind turbine model for low-
frequency noise, InterNoise (Conf. Proc.), 2017.

Obl. Command name Explanation
noise_mode 1. Noise mode (0=no noise calculation, 1=compute noise at each

time-step on the fly, 2=store aerodynamic data for later noise
calculation as post-processing (using option 3 or 4), 3=compute
noise at each time-step using stored data, 4=compute steady-state
noise using stored data and rotor disk azimuthal sector averaging
yielding large time-saving) (default=0)

noise_start_end_time Start and end time for noise computation.
1. Start time, t0 [s]
2. End time, t1 [s]
(default: at all time)

- 65



Obl. Command name Explanation
noise_deltat 1. Time-step for noise calculation (default: at each HAWC2 time-

step)
noise_azimuth_sectors 1. Number of rotor disk azimuthal sectors when running

noise_mode=4 (default=16)
atmospheric_pressure 1. Atmospheric pressure [Pa] (default=101325.)
temperature 1. Temperature [deg. Celsius] (default=20.)
octave_bandwidth 1. Octave band frequency centers used for defining noise spectra.

Options are: 1, 3, 12 and 24 (default=3)
spl_min_max_frq Minimum and maximum computed frequency for

integrated sound pressure level calculations.
1. Minimum frequency, f rmin [Hz]
2. Maximum frequency, f rmax [Hz]
(default: all octave band frequency centers are used)

turbulent_inflow_noise 1. Turbulent inflow noise model (0=using Von Karman
turbulence spectra, 1=using Mann atmospheric turbulence
model) (default=0)

turbulent_inflow-
_thickness_correction

1. Turbulent inflow thickness correction (0=none, 1=correction
is added to turbulent inflow noise) (default=0)

mann_turbulence_parameters Mann turbulence parameters.
1. L: turbulent integral length (default=29.7m)
2. αε2/3: energy level (default=1.0)
3. γ: anisotropy factor (default=3.7)
If any value is negative, then its default value is assumed.

surface_roughness 1. Surface roughness, z0 (If specified, it is used to re-define the
Mann turbulence parameters)

trailing_edge_noise 1. Trailing edge model (0=none, 5=TNO ‘frba’ model, 31=Amiet
‘frba’ model, 41=Amiet ‘asfi’ model) (default=0)

* bldata_filename 1. Filename incl. relative path defining tabulated input data for
trailing edge noise model.

trailing_edge_serration Trailing edge serration model parameters.
1. R1 Inboard radius [m]
2. R2 Outboard radius [m]
3. Lser Serration periodic span length [m]
3. Hser Serration crest to trough height [m]

stall_noise 1. Stall noise model (0=none, 1=Amiet based model, 2=Full
formulation) (default=0)

stall_separation Stall separation definition.
1. Stall separation (1=tabulated and given in bldata_filename,
2=use dynamic stall model, 3=forced separation location)
(default=1)
2. Forced separation location (x/C[-]: if positive on suction side,
if negative on pressure side)

tip_noise 1. Tip noise model (0=none, 1=not implemented yet!!!)
(default=0)

loading_noise 1. Loading-thickness noise model (0=none, 1=based on tabulated
Cl, 2=based on Cp distribution from tabulated data, 3=based on
Cl from HAWC2 aerodynamics) (default=0)
This model does not work with noise_mode=4.

loading_data_filename 1. Filename incl. relative path defining tabulated input data for
loading-thickness noise.

* xyz_observer Position of observer in global reference system.
1. x [m]
2. y [m]

66 -



Obl. Command name Explanation
3. z [m]
More than one observer is allowed (but must be <256).

output_filename 1. Filename incl. relative path for output log file.

12.6 Sub command block – bemwake_method

Dynamic inflow settings used to calculate the dynamic induction. If not included defaults
parameters are automatically used.

Obl. Command name Explanation
nazi 1. Number of azimuthal points in the induction grid. A high

number increased accuracy but slow down the simulation time.
Default is 16.

fw Dynamic time constants and mixing ratio contribution for the far
wake part of the induction.
1. Mixing ratio, default is 0.4
2. k3 (poly. coef. for r/R sensitivity) default=0.0
3. k2 (poly. coef. for r/R sensitivity) default=-0.4751
4. k1 (poly. coef. for r/R sensitivity) default=0.4101
5. k0 (poly. coef. for r/R sensitivity) default=1.921

nw Dynamic time constants and mixing ratio contribution for the
near wake part of the induction.
1. Mixing ratio, default is 0.6
2. k3 (poly. coef. for r/R sensitivity) default=0.0
3. k2 (poly. coef. for r/R sensitivity) default=-0.4783
4. k1 (poly. coef. for r/R sensitivity) default=0.1025
5. k0 (poly. coef. for r/R sensitivity) default=0.6125

a-ct-filename Filename for a user defined relation bewteen a and ct.

12.7 Sub command block – nearwake_method

The near wakemodel implementation in HAWC2 couples the lifting line theory based near wake
model for trailed vorticity with the modified HAWC2 BEM as a far wake model. Inherently
included in the trailed vorticity computations are the influences of the tip and root vortices; a
‘root-loss’ model is otherwise not included in HAWC2. The model is described in [1,2] and
has been shown to improve the dynamic blade loading in the presence of turbulence, blade
vibrations and flap actuations.

In case of strong load gradients on the blade due to for example flaps at fixed angle or other
aerodynamic devices activating the near wake model leads to an improved steady state load
distribution.When used in this case with a prescribed point distribution along the blade (defined
in the ae-file) then sudden changes in the point density (for example close to the flap) should
be avoided as they can lead to numerical instability of the model. As with any vortex model,
care should be taken when operating in deep stall conditions, such as extreme yaw conditions
in standstill.

[1] Pirrung, G., Riziotis, V., Madsen, H., Hansen, M., and Kim, T.: Comparison of a coupled
near- and far-wake model with a free-wake vortex code, Wind Energ. Sci., 2, 15-33, https:
//doi.org/10.5194/wes-2-15-2017, 2017.

[2] Pirrung, G. R., Madsen, H. A., Kim, T., and Heinz, J.: A coupled near and far wake model
for wind turbine aerodynamics, Wind Energy, doi:10.1002/we.1969, 2016.

- 67

https://doi.org/10.5194/wes-2-15-2017
https://doi.org/10.5194/wes-2-15-2017


Obl. Command name Explanation
only_one_nw_function Dynamic accuracy, see Section 6 in [1] for details. (0=2

exponential functions used; 1=default, 1 exponential function
used: minimally lower accuracy but almost twice as fast)

only_axial_nw (0=default, near wake model used for both axial and tangential
induction; 1= near wake model used for axial induction only)

fast_nwm (0=full iteration loop of the near wake model; 1= default, helix
angle and vortex filament length fixed during iteration loop,
almost identical results, much faster)

fixed_kfw kfw (0<kfw<1). This coupling factor will be used and is fixed
during the computation. Not using this command means the
coupling factor will be computed automatically and dynamically
updated each time step (default, see Section 5 in [2] for details)

r_core r_core determines the vortex core radius (default=0: no vortex
core is used). The implementation is in beta version and not
validated.

12.8 Sub command block – vawtwake_method

VAWT wake method parameters.

Obl. Command name Explanation
nazi 1. Number of azimuthal points in the induction grid. A high

number increased accuracy but slow down the simulation time.
fw Dynamic time constants and mixing ratio contribution for the far

wake part of the induction.
1. Mixing ratio, default is 0.4
2. k3 (poly. coef. for r/R sensitivity) default=0.0
3. k2 (poly. coef. for r/R sensitivity) default=-0.4751
4. k1 (poly. coef. for r/R sensitivity) default=0.4101
5. k0 (poly. coef. for r/R sensitivity) default=1.921

nw Dynamic time constants and mixing ratio contribution for the
near wake part of the induction.
1. Mixing ratio, default is 0.6
2. k3 (poly. coef. for r/R sensitivity) default=0.0
3. k2 (poly. coef. for r/R sensitivity) default=-0.4783
4. k1 (poly. coef. for r/R sensitivity) default=0.1025
5. k0 (poly. coef. for r/R sensitivity) default=0.6125

12.9 Data format for the aerodynamic layout

The format of this file which in the old HAWC code was known as the hawc_ae file is changed
slightly for the HAWC2 input format. The position of the aerodynamic center is no longer an
input value, since the definition is that the center is located in C1/4 with calculated velocities in
C3/4.

68 -



Figure 6: Illustration of aerodynamic centers C1/4 and C3/4

The format of the file is specified in the following two tables

Line number Description
1 #1: Nset, Number of datasets present in the file. The format of

each data set can be read below. The datasets are repeated without
blank lines etc.

2 #1: Set number. #2: Nrows, Number of data rows for this set
3..2+Nrows Data row according to Table 5

Table 22: Format of main data structure for the aerodynamic “_ae” blade layout file

The content of the colums in a data row is specified in the table below.

Column Parameter
1 r, distance from main_body node 1 along z-coordinate [m]
2 chord length [m]
3 thickness ratio between profile height and chord [%]
4 Profile coefficient set number
(5) Optional column.When present, it includes a dynamic stallmodel

selector. It is then possible to bypass or change dynamic stall
model for different part of the blade. Numbers are identical to the
one used in the command “aero dynstall_method”

Table 23: Format of the data rows for the aerodynamic “_ae” blade layout file

12.10 Example of an aerodynamic blade layout file

1 Number of datasets in the file.

1 25 Set nr, nrows.

0 2.42 100 1 Radius [m] chord[m] thick[%] PC [-]

1.239 2.42 100 1

1.24 2.42 99.9 1

3.12 2.48 96.4 1

5.24 2.65 80.5 1

7.24 2.81 65.0 1

9.24 2.98 51.6 1

11.24 3.14 40.3 1

13.24 3.17 32.5 1

15.24 2.99 28.4 1

- 69



17.24 2.79 25.6 1

19.24 2.58 23.7 1

20.44 2.46 22.8 1

23.24 2.21 20.9 1

25.24 2.06 20.0 1

27.24 1.92 19.4 1

29.24 1.8 19.0 1

31.24 1.68 18.7 1

33.24 1.55 18.6 1

35.24 1.41 18.3 1

37.24 1.18 17.9 1

38.24 0.98 17.3 1

39.24 0.62 16.3 1

39.64 0.48 15.7 1

40.00 0.07 14.8 1

12.11 Data format for the profile coefficients file

The format of this file which in the old HAWC code was known as the hawc_pc file has not
been changed for the HAWC2 code.

The format of the file is specified in the following two tables

Line number Description
1 #1: Nset, Number of datasets present in the file. The format of

each data set can be read below. The datasets are repeated without
blank lines etc.

2 #1: Nprofiles. Number of profiles included in the data set. There
must be more than 1 Nprofiles. First profile is the thinnest, last
profile is the thickest (continously increasing order).

3 #1: Set number. #2: Nrows. #3: Thickness in percent of chord
length

4..3+Nrows Data row according to Table 7

Table 24: Format of main data structure for the profile coefficients file

The content of the colums in a data row is specified in table below.

Column Parameter
1 α, angle of attack [deg]. Starting with -180.0, ending with +180.0
2 Cl lift coefficient [-]
3 Cd drag coefficient [-]
4 Cm moment coefficient [-]

Table 25: Format of the data rows for the profile coefficients file

12.12 Example of the profile coefficients file “_pc file”

1 Airfoil data for the nrel 5 mw turbine

8

1 127 17 DU17 airfoil with an aspect ratio of 17. Original -180 to 180deg

-180.00 0.000 0.0198 0.0000

70 -



-175.00 0.374 0.0341 0.1880

-170.00 0.749 0.0955 0.3770

-160.00 0.659 0.2807 0.2747

-155.00 0.736 0.3919 0.3130

-150.00 0.783 0.5086 0.3428

-145.00 0.803 0.6267 0.3654

-140.00 0.798 0.7427 0.3820

-135.00 0.771 0.8537 0.3935

-130.00 0.724 0.9574 0.4007

-125.00 0.660 1.0519 0.4042

-120.00 0.581 1.1355 0.4047

-115.00 0.491 1.2070 0.4025

-110.00 0.390 1.2656 0.3981

-105.00 0.282 1.3104 0.3918

-100.00 0.169 1.3410 0.3838

-95.00 0.052 1.3572 0.3743

-90.00 -0.067 1.3587 0.3636

-85.00 -0.184 1.3456 0.3517

-80.00 -0.299 1.3181 0.3388

-75.00 -0.409 1.2765 0.3248

-70.00 -0.512 1.2212 0.3099

-65.00 -0.606 1.1532 0.2940

-60.00 -0.689 1.0731 0.2772

-55.00 -0.759 0.9822 0.2595

12.13 Data format for the flap steady aerodynamic input (.ds file)

This file contains the pre-processed steady data required by the ATEFlap dynamic stall model.
Steady lift, drag and moment coefficients are given as function of angle of attack and flap
deflection, together with the fully separated and fully attached lift, and the separation function
values required by the Beddoes-Leishmann dynamic stall model. The input file can be generated
automatically through an external pre-processing application, as for instance the “Preprocessor
for ATEFlap Dynamic Stall Model, v.2.04”. Please refer to the application documentation for
further details.

The format of the file is specified in the following two tables:

Line number Description
1 Free for comments
2 Free for comments
3 #1: Aoa0 [rad]. Angle of attack returning a null steady lift
4 Free for comments
5 #1: dCl/dAoa [1/rad]. Gradient of the steady lift function with

respect to angle of attack variations
6 Free for comments
7 #1: dCl/dBeta [-]. Gradient of the steady lift function with respect

to flap deflection variations
8 Free for comments
9 #1: Nrows. Total number of the following data-rows.
10...9+Nrows Data rows, as specified in following table.

Table 26: Format of main data structure for the .ds flap steady aerodynamic input file

- 71



The content of the columns in a data row is specified in table below.

Column Parameter
1 α, Angle Of Attack [deg]. Starting with -180.0, ending with

+180.0. External loop (changes value after going through all the
beta flap deflection values, i.e. 100 rows)

2 Beta, flap deflection. Starting from -49 to +50. Internal loop
(changes at every data row)

3 Cl st. Steady lift coefficient [-]
4 Cl att. Fully attached lift coefficient [-]
5 Cl fs. Fully separated lift coefficient [-]
6 Cd drag coefficient [-]
7 Cm moment coefficient [-]
8 f . Steady value of the separation function [-]

Table 27: Format of the data rows for the .ds flap steady aerodynamic input file

12.14 Example of a .ds flap steady aerodynamic input file

Input file for Flap dyn.stall model. Generated with Delphi preprocessor

.Linear Region: Aoa Cl0 [rad]:

-0.06523855

.Linear Region: dCl / dAoa [1/rad]:

6.60081861

.Linear Region: dCl / dBeta [1/deg]:

0.0435375

. Polars: 1.Aoa | 2.Beta | 3.Clst | 4.Cl Att | 5.Cl fs | 6.Cd | 7.Cm | 8.F

36100

-180 -49 -0.22013 -20.5241432 -0.22013 0.0199118108 0.0451649986 0

-180 -48 -0.22013 -20.5241432 -0.22013 0.0199118108 0.0451649986 0

... ...

-180 +50 0.21096 -20.088768 0.21096 0.0199443996 -0.0431930013 0

-179 -49 ...

-179 -48 ...

... ...

+180 +50 ...

12.15 Data format for the user defined a-ct relation

The format of the file is specified in the following two tables

Line number Description
1. nrad interp Nrad interpolation. Interpolation method can either be “linear”

or “akima”
2. nazi Data row according to Table 11

Table 28: Format of main data structure for the profile coefficients file

The content of the colums in a data row is specified in table below.

Column Parameter
1 non-dim radius r/R

72 -



Column Parameter
2 k1 polynomium coef
3 k2 polynomium coef
4 k3 polynomium coef
5 k4 polynomium coef

Table 29: Format of the data rows for the profile coefficients file

12.16 Main commandblock – blade_c2_def (for usewith old_htc_structure
format)

In this command block the definition of the centerline of the main_body is described (position
of the half chord). This command shall be used as a main command even though it is only used
together with the aerodynamic module. The reason for this is that it used to submit information
that is usually given in the new_htc_structure format, which is also a main command block.
The input data given with the sec commands below is used to define a continuous differentiable
line in space using akima spline functions. This centerline is used as basis for local coordinate
system definitions for sections along the structure. If a straight line is requested a minimum of
three points of this line must be present.

Obl. Command name Explanation
* nsec Must be the present before a “sec” command.

1. Number of section commands given below
* sec Command that must be repeated “nsec” times

1. Number
2. x-pos [m]
3. y-pos [m]
4. z-pos [m]
5. θz [deg]. Angle between local x-axis and main_body x-axis
in the main_body x-y coordinate plane. For a straight blade this
angle is the aerodynamic twist. Note that the sign is positive
around the z-axis, which is opposite to traditional notation for
etc. a pitch angle.

- 73



13 Aerodrag (for tower and nacelle drag)

13.1 Main command aerodrag

With this module it is possible to apply aerodynamic drag forces at a given number of structures.

13.2 Subcommand aerodrag_element

Command block that can be repeated as many times as needed. In this command block
aerodynamic drag calculation points are set up for a given main body.

Obl. Command name Explanation
* body_name or mbdy_name 1. Main_body name to which the hydrodynamic calculation

points are linked.
* aerodrag_sections 1. Distribution method: (“uniform” only possibility)

2. Number of calculation points (min. 2).
nsec This command must be present before the sec commands

1. Number of sections given below
sec This command must be repeated nsec times

1. Distance in [m] along the main_body c2_def line. Positive
directed from node 1 to node “last”.
2. Cd drag coefficient (default=1.0)
3. Width of structure (diameter)

update_states Logical parameter that determines whethe the movement of the
structure is included or not.
1. parameter (1=states are updated (default), 0=not updated)

*) Input commands that must be present

74 -



14 Hydrodynamics

14.1 Main command block - hydro

In this command block hydrodynamic forces calculated using Morison’s formula is set up.

14.2 Sub command block – water_properties

Obl. Command name Explanation
* gravity 1. Gravity acceleration (used for calculation of buoyancy forces).

Default = 9.81 m/s2
* mudlevel 1. Mud level [m] in global z coordinates.
* mwl 1. Mean water level [m] in global z coordinates.
* rho 1. Density of the water [kg/m3]. Default=1027

wave_direction 1. Wave direction [deg]. Direction is positive when the waves
come forward from the right when looking towards the wind at
default conditions.

current 1. Current type (0=none (default), 1=constant, 2=power law
U(z) = U0((z + mudlevel − mwl)/(mudlevel − mwl))α

2. Current velocity at mwl, u0
3. type parameter. If type=2 then parameter is alfa
4. Current direction relative to wave direction [deg]. Positive
direction if current comes from the right looking towards the
incoming waves.

water_kinematics_dll 1. Filename incl. relative path to file containing water kinematics
dll (example ./hydro/water_kin.dll)
2. String sent to initialization of dll. This is typical the name of a
local inputfile of the dll.

14.3 Sub command block – hydro_element

Command block that can be repeated as many times as needed. This command block set up
hydrodynamic calculation points and link them to a main_body.

Obl. Command name Explanation
* body_name or mbdy_name 1. Main_body name to which the hydrodynamic calculation

points are linked.
* hydrosections 1. Distribution method of hydrodynamic calculation points.

Options are:
“uniform” nnodes. Where uniform ensures equal distance of the
calculation points. nnodes are number of calculation points.
“auto” nint. Here calculations points are chosen as the postions of
the structural nodes and the hydro dynamic input section given by
the sec command. The parameter nint is a refinement parameter
given nint extra calculation points in between the other points.

* nsec This command must be present before the sec commands
1. Number of sections given below

* sec_type Type of cross section (1=circular, 2=general)
* sec This command must be repeated nsec times and is different for

each section type.
Section type 1 – circular:

- 75



Obl. Command name Explanation
1. Relative distance along the main_body c2_def line. Positive
directed from node 1 to node “last”.
2. Ca added mass coefficient (default=1.0)
3. Cd drag coefficient (default=1.0)
4. Cross sectional area [m2]
5. Cross sectional area to which Ca is related. (default=area for
circular sections) [m2]
6. Width of construction perpendicular to flow direction [m]
7. drdz gradient(optional). For calculating the buoyancy also for
conical sections the gradient expressing the change in radius
with change of distance along the main_body c2_def line. Only
important when buoyancy forces are included.
8. Axial drag Cd coefficient for concentrated force contribution
(optional). Drag area is circular area defined by the local width.
Contribution is quadratic regarding water velocity.
9. Axial added mass Ca coefficient for concentrated force
contribution (optional). Added mass volume is a sphere defined
by the local width as diameter.
10. Axial drag Cd coefficient for concentrated force contribution
(optional). Drag area is circular area defined by the local width.
Contribution is linear regarding water velocity.
11. Internal cross sectional area for flooded members [m2]
(optional). 0=member is not flooded.
12. Torque friction coefficient Cf (optional). For rotating
cylinders around local z-direction.
Mz =

1
16 ρD4ω2Cf

buoyancy 1. Specification whether buoyancy forces are included or not.
0=off (default), 1=on (remember to define the 7th parameter in
the sec input line.

update_states 1. Specification whether the hydrodynamic sections are updated
in time with respect to pos, vel, acc and orientations, or simply
considered to remain fixed. 0=not updated, 1=updated (default)

update_kinematics 1. Specification whether the water kinematics are updated during
iterations or only once per time step. 0=only updated once per
time step, 1=full update (default).

Here is an example of this written into the htc-input file.

begin HYDRO_ELEMENT ;

mbdy_name cylinder ;

buoyancy 1 ;

update_states 1 ; (0: no dynamic interaction, 1: fully coupled solution

hydrosections auto 4 ; dist, of hydro calculation points from 1 to nsec

nsec 2; z Ca Cd A Aref width dr/dz Cd_a_(quad) Ca_a Cd_a_lin Aif

sec 0.0 1 1 3.404 3.404 2.082 0.0 0.0 0.0 0.0 3.023;

sec 5.0 1 1 3.404 3.404 2.082 0.0 0.0 0.0 0.0 3.023;

end HYDRO_ELEMENT ;

This example shows a flooded cylindrical element (l=5 m, d= 2,082 m and t=60mm).

76 -



14.4 Description of the water_kinematics_dll format.

subroutine init(inputfile,t0,t1,dt) implicit none

character*(*) :: inputfile

real*8 :: t0 ! start time for simulation

real*8 :: t1 ! stop time for simulation

real*8 :: dt ! time increment

!DEC$ ATTRIBUTES DLLEXPORT, ALIAS:’init’::init

end subroutine init

!---------------------------------------------------------------------------

subroutine set_new_time(time)

implicit none

!DEC$ ATTRIBUTES DLLEXPORT, ALIAS:’set_new_time’::set_new_time

real*8 :: time

end subroutine set_new_time

!---------------------------------------------------------------------------

subroutine get_sea_elevation(posxy_h,elevation)

implicit none

!DEC$ ATTRIBUTES DLLEXPORT, ALIAS:’get_sea_elevation’::get_sea_elevation

real*8,dimension(2) :: posxy_h ! horizontal position coordinates

real*8 :: elevation ! water height above mean water ! level, positive upwards

end subroutine get_sea_elevation

!---------------------------------------------------------------------------

!DEC$ ATTRIBUTES DLLEXPORT, ALIAS:’get_kinematics’::get_kinematics

real*8,dimension(3) :: pos_h,& vel_h,&

acc_h

real*8 :: pres

end subroutine get_kinematics

14.5 User manual to the standard wkin.dll version 2.4.

The wkin.dll which is delivered along with the HAWC2 code needs a separate inputfile. The
format for these inputs are the same as the HAWC2 main inputfile with usage of begin..end
clauses, semi colon separators, exit command etc. Command words are described below.

All commandwordswritten below has to be included in an begin .. end clause calledwkin_input:

begin wkin_input;

...

end wkin_input;

exit;

Version info:

1-0 TJUL Basic edition by TJUL

1-1 ANMH Wave field can be read by file and used directly through fft

conversion

1-2 TJUL Directional spreading included

1-3 ANMH Bug corrected regarding read on seed number using iregular

waves

- 77



1-4 TJUL Pierson-Moscowitz spectrum added as option

Stream function wave added

Possible pre processing of wave field to speed up simulation

time and enable many more coeffients

1-5 TJUL Bug in stream function wave. Static pressure was included �

now removed

1-6 TJUL Bug in stream fuction wave. lateral position was applied

instead of vertical in kinematics look-up!!!

1-7 TKIM New wave format for precalculated (high order) wave fields

1-8 ANMH Update in deterministic iregular waves+bugfix

1-9 TJUL New option for white noise wave exitation

2-0 TJUL Bug fix of version 1-9. Version 1-9 had some debug

statements included that could meas up the time.

2-1 ANMH Ported to intel

ANMH Correction for high wave numbers in deterministic irregular

waves

TJUL Embedded stream function wave, phase velocity used insted

of group velocity with respect to pregenerated waves

2-2 TJUL Bug fix. Tightended criteria for jonswap spectrup min-max.

Use of real*8 in all internal memory related variables.

14.6 Main commands in the wkin.dll

Obl. Command name Explanation
* wavetype 1. Type of wave used. (0=regular airy, 1=irregular airy,

2=deterministic irregular airy, 3=regular stream function,
4=general wavemode format)

* wdepth 1. Water depth [m]. Positive value.

14.7 Sub command reg_airy

Command that need to be present if the wavetype equals 0 in the main command.

Obl. Command name Explanation
* stretching 1. Wheeler stretching of waves. (0=off, 1=on)
* wave 1. Significant wave height Hs [m]

2. Wave period T [s]

14.8 Sub command ireg_airy

Command that need to be present if the wavetype equals 1 in the main command.

Obl. Command name Explanation
* stretching 1. Wheeler stretching of waves. (0=off, 1=on)
* spectrum 1. Base spectrum used. (1=jonswap, 2= Pierson Moscowitz)

jonswap Jonswap spectrum formulation
1. Significant wave height Hs [m]
2. Wave period Tp [s]
3. γ parameter [-]. A typical value is 3.3

pm Pierson-Moscowitz spectrum
1. Significant wave height Hs [m]
2. Wave period Tp [s]

78 -



Obl. Command name Explanation
wn White noise.

1. Target variance level [m2]
2. f0, minimum frequency
3. f1, maximumn frequency

* coef 1. Number of coefficients. Normally 200 are used even though
higher values are recommended in general. A speed issue...
2. Seed number. A positive integer value.

spreading 1. Spreading model. (0=none, 1=K2s model also referred to as
Kn model)
2. Spreading parameter. If model=1 the parameter is s, a positive
integer. The higher value, the less spreading.

pregen Pre-generation of a wave field (default is on). Using this option
the irregular wave field is calculated during initialization phase
and only table look-up is done during the time simulation phase.
Very fast and still accurate.
1. Pregen option. (0=traditional approach (slow), 1=pregenerated
wave field used (default))

Embed_strf Embed stream function wave in time series at the time when the
otherwise largest wave occurs. The wave kinematics is blended
into the iregular waves before and after. Wave time period equls
Tp

1. Wave height H [m]

14.9 Sub command det_airy

Command that need to be present if the wavetype equals 2 in the main command. This command
is used when water kinematics needs to be calculated based on a measured elevation time series.

Obl. Command name Explanation
* file 1. File name for measured wave elevation.
* nsamples 1. Number of lines present in wave elevation file
* nskip 1. Number of lines to skip before reading of wave elevation file
* columns 1. Column number for time sensor in file.

2. Column number for wave elevation in file.
stretching 1. Wheeler stretching of waves. (0=off, 1=on (default))

* cutoff_frac 1. Fraction of total energy which is discarded in the low and high
frequency ranges. Default 1E-5

14.10 Sub command strf

Stream function wave input.

Obl. Command name Explanation
* wave 1. Significant wave height Hs [m]

2. Wave period T [s]

14.11 Sub command wavemods

Command that need to be present if the wavetype equals 4 in the main command. This command
is used when water kinematics needs to be calculated based on a measured elevation time series.

- 79



Obl. Command name Explanation
* datafile_y 1. Name of datafile where wave kinematic data is present for the

horizontal (wave) direction
* datafile_z 1. Name of datafile where wave kinematic data is present for the

vertical direction
* datafile_nd 1. Number of depth locations
* datafile_depth 1. Minimum water depth (m)
* datafile_nt 1. Number of time steps in datafile
* datafile_t0 1. Time for when wave data is extracted in the datafiles
* ncol_y 1. Number of columns in datafile1 (time+eta+vel+acc)
* ncol_z 2. Number of columns in datafile2 (time+vel+acc)

An example of input files with wave kinematics data for the wavemods option is given below.
Please note the following:

• The first 9 lines are general comment lines

• Line 10 lists the relative depths, and the number of relative depths must match datafile_Nd
in the wavemods subcommand

• Each row starting at Line 12 corresponds to a single time step, and there should be at least
datafile_Nt rows before the end of the file

• The datafile columns correspond to time, eta (the distance between the wave height and
the MSL; not present in the vertical-component input file), datafile_Nd velocities, and then
datafile_Nd accelerations

Example of datafile_y (horizontal wave component):

Wave kinematics input to Flex5 Monopile ver. 2.1

General comment line

Wave load program "WaveKin" ver. 1.0

Echo file : Outfile.dat

Name of Case

Wave Description

slope 1:25

50 water depth

3 No rel. depths N

0.000 0.500 1.000

T eta u[1]..u[N] a[1]..a[N]

0.000 -0.645 -0.022 -0.027 -0.047 -0.018 -0.022 -0.035

0.063 -0.659 -0.023 -0.029 -0.049 -0.017 -0.021 -0.032

0.126 -0.671 -0.025 -0.030 -0.051 -0.016 -0.020 -0.030

(etc)

Example of datafile_z (vertical wave component):

Wave kinematics input to Flex5 Monopile ver. 2.1

General comment line

Wave load program "WaveKin" ver. 1.0

Echo file : Outfile.dat

Name of Case

Wave Description

slope 1:25

80 -



50 water depth

3 No rel. depths N

0.000 0.500 1.000

T u[1]..u[N] a[1]..a[N]

0.000 -0.022 -0.027 -0.047 -0.018 -0.022 -0.035

0.063 -0.023 -0.029 -0.049 -0.017 -0.021 -0.032

0.126 -0.025 -0.030 -0.051 -0.016 -0.020 -0.030

(etc.)

14.12 Wkin.dll example file

begin wkin_input ;

wavetype 1 ; 0=regular, 1=irregular, 2=deterministic

wdepth 220.0 ;

;

begin reg_airy ;

stretching 0; 0=none, 1=wheeler

wave 9 12.6; Hs,T

end;

;

begin ireg_airy ;

stretching 0; 0=none, 1=wheeler

spectrum 1; (1=jonswap)

jonswap 9 12.6 3.3 ; (Hs, Tp, gamma)

coef 200 1 ; (coefnr, seed)

spreading 1 2; (type(0=off 1=on), s parameter (pos. integer min 1)

end;

;

begin det_airy ;

stretching 0; 0=none, 1=wheeler

file ..\waves\elevation.dat ;

nsamples 32768 ;

nskip 1 ;

columns 1 5 ; time column, elevation column

end;

;

begin wavemods;

datafile_y ./wavedata/wavekin_y.dat;

datafile_z ./wavedata/wavekin_z.dat;

datafile_nt 900; number of time steps in file

datafile_nd 3; number of relative water depths

datafile_t0 50; start time for data extraction

datafile_depth 50 ; minimum water depth

ncol_y 8; Number of data columns in file

ncol_z 7; Number of data columns in file

end;

end;

;

exit ;

- 81



15 Soil module

15.1 Main command block - soil

In this command block soil spring/damper forces can be attached to amain body. The formulation
is performed so it can be used for other external distributed spring/damper systems than soil.

15.2 Sub command block – soil_element

Command block that can be repeated as many times as needed. In this command block the
distributed soil spring/damper system is set up for a given main body.

Obl. Command name Explanation
* mbdy_name 1. Main_body name to which the soil calculation points are

linked.
* datafile 1. Filename incl. relative path to file containing soil spring

properties (example ./soil/soildata.dat)
* soilsections 1. Distribution method: (“uniform” only possibility)

2. Number of section (min. 2).
damping_k_factor 1. Rayleigh kind of damping. Factor the linear stiffness

coefficients are multiplied with to obtain the damping
coefficients. When the factor is 1.0 the vibration is critically
damped for the rigid mainbody connected to the spring and
dampers.

♣ set 1. Set number in datafile that is used.

*) Input commands that must be present

♣) Command can be repeated as many times as desired.

15.3 Data format of the soil spring datafile

In the file (which is a text file) different distributed springs can be defined. Each set is located
after the “#” sign followed by the set number.Within a set the following data needs to be present.

line 1 “spring type” (can be “axial”, “lateral” or “rotation_z”)
line 2 “nrow ndefl” (nrow is number of rows, ndefl is number of deflections (colums)

line 3..
3+nrow

“z_global F(1) F(2),...,
F(ndefl)”

First colum is the spring location (global z coordinate). The
following colums are Force/length at the different deflection
stations. First deflection must be zero. The forces are assumed
symmetrical around the zero deflection.

An example is given below:

This is a nonlinear soil spring demonstration file

#1

lateral (axial/lateral)

5 4 nrow ndefl

0.0 0.1 0.2 1.0 x1 x2 x3 ..... [m]

0.0 0 15 20 500 Z_G F_1 F_2 F_3 .... F_ndefl [kN/m]

10.0 0 15 20 500

82 -



20.0 0 15 20 500

30.0 0 15 20 500

40.0 0 15 20 500

#2

axial (axial/lateral)

5 4 nrow ndefl

0.0 0.1 0.2 1.0 x1 x2 x3 ..... [m]

0.0 0 150 200 5000 Z_G F_1 F_2 F_3 .... F_ndefl [kN/m]

10.0 0 150 200 5000

20.0 0 150 200 5000

30.0 0 150 200 5000

40.0 0 150 200 5000

#3

rotation_z (axial/lateral/rotation_z)

5 4 nrow ndefl

0.0 0.1 0.2 1.0 x1 x2 x3 ..... [rad]

0.0 0 150 200 5000 Z_G M_1 M_2 M_3 .... M_ndefl [kNm/m]

10.0 0 150 200 5000

20.0 0 150 200 5000

30.0 0 150 200 5000

40.0 0 150 200 5000

- 83



16 External forces through DLL

16.1 Main command block – Force

16.1.1 Sub command - DLL

This command block can be used when a user defined external force is applied to the structure.
The main difference between this DLL format and the normal DLL control interface (used with
external controllers) is that added stiffness is calculated initially leading to a more robust a fast
solution of the coupled system. This force module can with good results be applied for external
equivalent soil-springs or hydrodynamic forces for floating constructions or mooring lines.

Obl. Command name Explanation and parameters
dll 1. Filename incl. relative path to the external DLL (example

./dll/force.dll)
update 1. Name of subroutine in the DLL.
mbdy 1. Name of main body to which force dll is coupled.
node 1. Node number of main body to which force dll is couple

16.2 Example of a DLL interface written in fortran90

!

! Demonstration of force DLL

!

SUBROUTINE DemoForceDLL(time,x,xdot,xdot2,amat,omega,omegadot,F,M)

!DEC$ ATTRIBUTES DLLEXPORT::DemoForceDLL

!DEC$ ATTRIBUTES ALIAS:’demoforcedll’ :: DemoForceDLL

! input

DOUBLE PRECISION :: time ! time

DOUBLE PRECISION ,DIMENSION(3) :: x ! global pos. of reference node

DOUBLE PRECISION ,DIMENSION(3) :: xdot ! global vel. of reference node

DOUBLE PRECISION ,DIMENSION(3) :: xdot2 ! global acc. of reference node

DOUBLE PRECISION ,DIMENSION(3) :: omega ! angular vel. of ref. node

! (global base)

DOUBLE PRECISION ,DIMENSION(3) :: omegadot ! angular acc. of ref. node

! (global base)

DOUBLE PRECISION ,DIMENSION(3,3) :: amat ! rotation matrix (body ->

! global)

! output

DOUBLE PRECISION ,DIMENSION(3) :: F ! External force in reference

! node (global base)

DOUBLE PRECISION ,DIMENSION(3) :: M ! External moment in reference

! node (global base)

! locals

LOGICAL, SAVE :: bInit = .FALSE. ! Initialization flag

DOUBLE PRECISION :: mass = 0.d0 ! Point mass

!

! Initialise on first call

IF (.NOT.bInit) THEN

bInit = .TRUE.

! Open file and read mass

OPEN(10,FILE="DemoForceDLL_mass.dat")

READ(10,*) mass

84 -



CLOSE(10)

ENDIF

!

! Calc. force

F = mass*((/0.d0,0.d0,9.81d0/) - xdot2)

M = 0.d0

!

END SUBROUTINE DemoForceDLL

16.3 Example of a DLL interface written in Lazarus / Pascal

library force_dll;

Type

vect = array[0..2] of double;

mat = array[0..2,0..2] of double;

procedure update( var time:double;var x:vect;var xdot:vect;var xdot2:vect;

var amat:mat;var omega:mat;var omegadot:vect;

var F,M:vect);stdcall;

// Example of applying a step up force in the x-direction:

begin

if time < 10 then

F[0] := 0.0;

if time >= 10 then

F[0] := 20000.0;

if time >= 20 then

F[0] := 40000.0;

end;

exports update;

begin

writeln(’The DLL force_dll.dll is loaded with succes’);

end.

- 85



17 Output

This command output can either be a main command block or a sub command block within the
hawc_dll command block. In the tables below two special columns are introduced. One is only
option and the other label option. When the check mark is ‘yes’ in only option it is possible
to use only one of the fields if more than one sensor was defined through the command. The
sensor that is used is determined by the number following the only command word, see example
below.

constraint bearing1 shaft_rot 2 only 2;

If the only command (and the following number) was omitted two sensors was defined; one for
the angle and one for the velocity. With the only command only the velocity sensor is used in
the output since the following number is 2.

With the label option it is possible to make a user defined label of the sensor which is written in
the sensor list file. The label command is the # symbol. Everything after the # symbol is used
as a label. An example of this could be

dll inpvec 1 1 # This is a dummy label ;

17.1 Commands used with results file writing

When the output command is used for output files (the most normal purpose) some information
regarding file name and format needs to be given.

Obl Command Explanation
* filename 1. Filename incl. relative path to outputfile without extension

(example ./res/output)
data_format ASCII or compressed binary output can be chosen. Default is the

ASCII format if nothing is specified.
1. format ( ‘hawc_ascii’=ASCII format,
‘hawc_binary’=compressed binary format,
‘flex_int’=compressed binary format,
‘gtsdf’=General time series data format (hdf5 based compressed
binary),
‘gtsdf64’=General time series data format (hdf5 based binary))

buffer Buffer size in terms of time steps. When the buffer is full the data
are
written to data file. Only used together with the ‘hawc_ascii’,’
gtsdf’ and ‘gtsdf64’ formats. Default is 3000 time steps
1. 1. buffer size

deltat Time interval between outputs [s]. If ’deltat’ is smaller than
simulation time step, output is made each time step.

time Time start t0 and stop t1 for output is defined. Default is the entire
simulation length if nothing is specified.
2. t0
3. t1

86 -



17.2 File format of HAWC_ASCII files

Results are written to an ascii formatted data file with the name assigned to the filename variable
(eg. filename ./res/resfil ). The data file will have the extension .dat as a standard. The description
of the sensors in the data file is given in another textfile with same filename as the data file but
the extension .sel. An example could be: ./res/resfil.dat and ./res/resfil.sel.

In the .sel-file, line numer 9 specifies the following parameters: Number of scans, Number of
sensors, Duration of output file, Data format (ASCII/BINARY). Example:

10 96 20.000 ASCII

From line number 13 and onwards, the sensors are specified with the following information:
Sensor number, Variable description, unit, Long description. Example:

5 bea1 angle_speed rad/s pitch1 angle speed

Full example of the .sel file:

____________________________________________________________________________

Version ID : HAWC2MB 4.3w

Time : 14:23:28

Date : 22:11.2006

____________________________________________________________________________

Result file : ./res2_rev0/case41c_nohydro.dat

____________________________________________________________________________

Scans Channels Time [sec] Format

4500 199 90.000 ASCII

Channel Variable Description

1 Time s Time

2 bea1 angle deg shaft_rot angle

3 bea1 angle_speed rpm shaft_rot angle speed

4 bea1 angle deg pitch1 angle

5 bea1 angle_speed rad/s pitch1 angle speed

6 bea1 angle deg pitch2 angle

7 bea1 angle_speed rad/s pitch2 angle speed

8 bea1 angle deg pitch3 angle

9 bea1 angle_speed rad/s pitch3 angle speed

____________________________________________________________________________

17.3 File format of HAWC_BINARY files

In this file format results are written to a binary unformatted data file with the name assigned
to the filename variable (eg. filename ./res/resfil ). The data file will have the extension .dat
as a standard. The description of the sensors in the data file is given in another textfile with
same filename as the data file but the extension .sel. An example could be: ./res/resfil.dat and
./res/resfil.sel.

The data are scaled to standard 2-byte integers, with a range of 32000 using a scalefactor. The

- 87



scalefactor is determined for each output sensor

s =
max(|max|, |min|)

32000
where max and min are the largest and lowest number in the original data for the sensor. These
scale factors are written in the end of the accompanying .sel file. When converting a binary
number to the actual number its just a matter of multiplying the binary numbers of a sensor
with the corresponding scalefactor.

In the accompanying text file, which has the extension .sel-file, information of the content in
the datafile is stored. In line number 9 the following parameters are specified: Number of scans,
Number of sensors, Duration of output file, Data format (ASCII/BINARY). Example:

10 96 20.000 ASCII

From line number 13 and onwards, the sensors are specified with the following information:
Sensor number, Variable description, unit, Long description. Example:

5 bea1 angle_speed rad/s pitch1 angle speed

From line number 9+nsensors+5 and upwards the scalefactors are written.

Full example of the .sel file:

____________________________________________________________________________

Version ID : HAWC2MB 4.3

Time : 14:23:28

Date : 22:11.2006

____________________________________________________________________________

Result file : ./res2_rev0/case41c_nohydro.dat

____________________________________________________________________________

Scans Channels Time [sec] Format

4500 9 90.000 ASCII

Channel Variable Description

1 Time s Time

2 bea1 angle deg shaft_rot angle

3 bea1 angle_speed rpm shaft_rot angle speed

4 bea1 angle deg pitch1 angle

5 bea1 angle_speed rad/s pitch1 angle speed

6 bea1 angle deg pitch2 angle

7 bea1 angle_speed rad/s pitch2 angle speed

8 bea1 angle deg pitch3 angle

9 bea1 angle_speed rad/s pitch3 angle speed

____________________________________________________________________________

Scale factors:

1.56250E-04

5.61731E-03

4.41991E-04

1.00000E+00

1.00000E+00

1.00000E+00

1.00000E+00

1.00000E+00

1.00000E+00

88 -



An important thing to notice is that in the binary data file all sensors are stored sequentially, i.e.
all data for sensor 1, all data for sensor 2, etc. This way of storing the data makes later reading
of a sensor extra fast since all data for a sensor can be read without reading any data for the
other sensor.

17.4 File format for gtsdf and gtsdf64 files

The file formats and reading and writing examples of the gtsdf and gtsdf64 file types and are
described here: https://gitlab.windenergy.dtu.dk/toolbox/WindEnergyToolbox/
blob/master/wetb/gtsdf/General%20Time%20Series%20Data%20Format.pdf

A reference Python implementation to read and write gtsdf files is available in the open source
WindEnergyToolbox:https://gitlab.windenergy.dtu.dk/toolbox/WindEnergyToolbox/
blob/master/wetb/gtsdf/gtsdf.py

A small matlab code for reading the binary HAWC2 format can be seen below.

function sig = ReadHawc2Bin(FileName,path);

% Reads binary HAWC2 results file

% -------------------------------------

% [t,sig] = ReadFlex4(FileName,Ch);

% filename should be without extension

% -------------------------------------

% BSKA 26/2-2008

% --------------------------------------

ThisPath = pwd; cd(path(1,:))

% reading scale factors from *.sel file

fid = fopen([FileName,’.sel’], ’r’); fgets(fid); fgets(fid);

fgets(fid); fgets(fid); fgets(fid); fgets(fid); fgets(fid);

fgets(fid);

tline = fscanf(fid,’%d’);

N = tline(1); Nch = tline(2); Time = tline(3); fclose(fid);

ScaleFactor = dlmread([FileName,’.sel’],’’,[9+Nch+5 0 9+2*Nch+4

0]);

% reading binary data file

fid = fopen([FileName,’.dat’], ’r’); sig =

fread(fid,[N,Nch],’int16’)*diag(ScaleFactor); fclose(fid);

cd(ThisPath)

17.5 mbdy (main body output commands)

Command
1

Command 2 Explanation Only
option

Label
option

mbdy forcevec Fx , Fy , Fz shear force vector defined to output. yes yes
1. Main_body name
2. Element number
3. Node number on element
4. Main_body name of which coordinate system
is used for output. “global” and “local” can also
be used. Local is around local beam main bending
directions.

- 89

https://gitlab.windenergy.dtu.dk/toolbox/WindEnergyToolbox/blob/master/wetb/gtsdf/General%20Time%20Series%20Data%20Format.pdf
https://gitlab.windenergy.dtu.dk/toolbox/WindEnergyToolbox/blob/master/wetb/gtsdf/General%20Time%20Series%20Data%20Format.pdf
https://gitlab.windenergy.dtu.dk/toolbox/WindEnergyToolbox/blob/master/wetb/gtsdf/gtsdf.py
https://gitlab.windenergy.dtu.dk/toolbox/WindEnergyToolbox/blob/master/wetb/gtsdf/gtsdf.py


Command
1

Command 2 Explanation Only
option

Label
option

mbdy momentvec Mx , My , Mz moment vector defined to output. yes yes
1. Main_body name
2. Element number
3. Node number on element
4. Main_body name of which coordinate system
is used for output. “global” and “local” can also
be used. Local is around local beam main bending
directions.

mbdy forcemomentvec_interp Fx , Fy , Fz , Mx , My , Mz interpolated shear force
and moment vector defined to output. This sensor
can write out an interpolated set of cross sectional
forces and moments independent of the node
discretization. It can also write out in local
deformed c2_def coordinates and therefore breaks
the limit of using element coordinates.

yes yes

1. Main_body name
2. Position of location outputted: ‘c2def’ or
‘default’ (default = elastic center).
3. Name of mbdy used for output coordinate
system: mbdy_name, ‘global’, ‘local_aero’ or
‘local_element’
4. Distance along c2_def to output location
5. Sign multiplied to output: 1.0 or -1.0

mbdy state Vector with 3 components of either position,
velocity or acceleration of a point on an element
defined to output. If ‘acg’ is used, the acceleration
including the gravity contribution is written.

yes yes

1. State: ‘pos’, ‘vel’, ‘acc’,’acg’
(“pos”=position, “vel”=velocity,
“acc”=acceleration)
2. Main_body name
3. Element number
4. Relative distance from node 1 to node 2 on
element
5. Main_body name of which coordinate system is
used for output. “global” can also be used.

mbdy state_at Vector with 3 components of either position,
velocity or acceleration of a point on an element
defined to output. The point is offset from the
element z axis by an x and y distance in element
coordinates.

yes Yes

1. State: ‘pos’, ‘vel’ or ‘acc’
2. Main_body name
3. Element number
4. Relative distance from node 1 to node 2 on
element
5. Main_body name of which coordinate system is
used for output. “global” can also be used.
6. x-coordinate offset [m]
7. y-coordinate offset [m]

90 -



Command
1

Command 2 Explanation Only
option

Label
option

mbdy state_at2 Vector with 3 components of either position,
velocity or acceleration of a point on an element
defined to output. The point is offset from the
c2_def centerline z axis by an x and y distance
in local c2def centerline coordinates.

yes Yes

1. State: ‘pos’, ‘vel’ or ‘acc’
2. Main_body name
3. Element number
4. Relative distance from node 1 to node 2 on
element
5. Main_body name of which coordinate system is
used for output. “global” can also be used.
6. x-coordinate offset [m]
7. y-coordinate offset [m]

mbdy state_rot Vector with components of either axis and
angle (angle [rad], r1,r2,r3), euler parameters
(quaternions r0,r1,r2,r3), euler angles, rotation
velocity (

yes Yes

-vector) or rotation acceleration (
-vector) of a point on an element defined to output.
For the sensor eulerang_xyx a set of euler angles
are created based on the orientation matrix. Be
aware that the method used is only valid for
rotations in the intervals
(θx ±180°, θy ±90°, θx ±180°). The method
proj_ang can be used to see how much a blade
tip rotates around the pitch axis, but be aware that
the angles are how the element is oriented and not
necesarily how the local chord is rotated. With
the command proj_ang the angles are obtained
from the local element orientation 3x3 matrix Te,
seen from the chosen coordinate system using the
Atan2 functions (rot_x=atan2[Te(2,3),Te(3,3)],
rot_y=atan2[Te(3,1),Te(1,1)],
rot_z=atan2[Te(1,2),Te(2,2)]).
1. State : ‘axisangle’, ‘eulerp’, ’eulerang_xyz’,
‘omega’, ‘omegadot’ or proj_ang
2. Main_body name
3. Element number
4. Relative distance from node 1 to node 2 on
element
5. Main_body name of which coordinate system is
used for output. “global” can also be used.

mbdy statevec_new This sensor writes out the position vector and
orientation vector for a point on the structure. The
orientation vector is a direction vector to which
the structure is rotated and the vector length is
the size of this rotation. There is a direct relation
between this vector and the 3x3-orientationmatrix,
but it is easier to overview as each single element
corresponds to a 2D projected rotation (rot_x,
rot_y, rot_z).

yes Yes

- 91



Command
1

Command 2 Explanation Only
option

Label
option

Furthermore it can write out the orientation of
the local deformed c2_def coordinates system
and therefore breaks the limit of only looking at
element orientations.
1. Main_body name
2. Position of location outputted: ‘c2def’ or
‘default’ (default = elastic center).
3. Name of mbdy used for output coordinate
system: mbdy_name, ‘global’, ‘local_aero’ or
‘local_element’
4. State: ‘elastic’ or ‘absolute’. Elastic means that
initial location is subtracted results
5. Distance along c2_def to output location
6. Sign multiplied to output: 1.0 or -1.0
7. x-coordinate offset from center to a point where
location is outputted (local c2def coo) [m]
8. y-coordinate offset from center to a point where
location is outputted (local c2def coo) [m]

This illustration shows how the sensors are placed on an element in terms of local nodes and
relative distance.

17.6 Constraint (constraint output commands)

17.6.1 bearing1

Command
1

Command 2 Explanation Only
option

Label
option

constraint bearing1 Bearing angle and angle velocity defined to output Yes No
1. bearing1 name
2. unit of output
(1:angle [unit=rad, range -π:π], vel [rad/s];
2:angle [unit=deg, range 0:360], vel [rpm];

92 -



Command
1

Command 2 Explanation Only
option

Label
option

3:angle [unit=deg, range 0:360], vel [rad/s]);
4:angle [unit=deg, range -180:180], vel [rad/s];
5:angle [unit=deg, range -180:180], vel [deg/s])

17.6.2 bearing2

Command
1

Command 2 Explanation Only
option

Label
option

constraint bearing2 Bearing angle and angle velocity defined to output Yes No
1. bearing2 name
2. unit of output
(1:angle [unit=rad, range -π:π], vel [rad/s];
2:angle [unit=deg, range 0:360], vel [rpm];
3:angle [unit=deg, range 0:360], vel [rad/s]);
4:angle [unit=deg, range -180:180], vel [rad/s];
5:angle [unit=deg, range -180:180], vel [deg/s])

17.6.3 bearing3

Command
1

Command 2 Explanation Only
option

Label
option

constraint bearing3 Bearing angle and angle velocity defined to output Yes No
1. bearing3 name
2. unit of output
(1:angle [unit=rad, range -π:π], vel [rad/s];
2:angle [unit=deg, range 0:360], vel [rpm];
3:angle [unit=deg, range 0:360], vel [rad/s]);
4:angle [unit=deg, range -180:180], vel [rad/s];
5:angle [unit=deg, range -180:180], vel [deg/s])

17.6.4 bearing4

Rotation angle and velocity of the two axis perpendicular to the cardan shaft torsion axis are
outputted.

Command
1

Command 2 Explanation Only
option

Label
option

constraint bearing4 Bearing angle and angle velocity defined to output Yes No
1. bearing4 name
2. unit of output
(1:angle [unit=rad, range -π:π], vel [rad/s];
2:angle [unit=deg, range 0:360], vel [rpm];
3:angle [unit=deg, range 0:360], vel [rad/s]);
4:angle [unit=deg, range -180:180], vel [rad/s];
5:angle [unit=deg, range -180:180], vel [deg/s])

17.7 aero (aerodynamic related commands)

- 93



Command
1

Command 2 Explanation Label
option

aero time Simulation time to output. No parameters. No
aero azimuth Azimuth angle of selected blade. Zero is vertical

downwards. Positive clockwise around blade root
y-axis. Unit [deg]

No

1. Blade number
aero omega Rotational speed of rotor. Unit [rad/s] No
aero vrel Relative velocity in x-y local aerodynamic plane.

Unit [m/s]
No

1. Blade number
2. Radius [m] (nearest inner calculation point is
used)

aero vrel_3d Relative velocity in x-y-z local aerodynamic space.
Unit [m/s]

No

3. Blade number
4. Radius [m] (nearest inner calculation point is
used)

aero alfa Angle of attack in x-y local aerodynamic plane.
Unit [deg]

No

1. Blade number
2. Radius [m] (nearest inner calculation point is
used)

aero alfadot Pitch rate term (z-axis rotation) in local
aerodynamic plane, as used for non-circulatory
contributions. Unit [rad/s]

No

1. Blade number
2. Radius [m] (nearest inner calculation point is
used)

aero sideslip Side slip angle (from radial flow of BEM
expansion)

No

1. Blade number
2. Radius [m] (nearest inner calculation point is
used)

aero beta Flap deflection angle (matching the deflection
specified by the flap control .dll):

No

1. Blade number
2. Flap number, according to the order defined in
the dynstall_ateflap sub-command block.

aero cl Instantaneous lift coefficient. Unit [-] No
1. Blade number
2. Radius [m] (nearest inner calculation point is
used)

aero cd Instantaneous drag coefficient. Unit [-] No
1. Blade number
2. Radius [m] (nearest inner calculation point is
used)

aero cm Instantaneous moment coefficient. Unit [-] No
1. Blade number
2. Radius [m] (nearest inner calculation point is
used)

aero lift Lift force at calculation point. Unit [kN/m] No
1. Blade number

94 -



Command
1

Command 2 Explanation Label
option

2. Radius [m] (nearest inner calculation point is
used)

aero drag Drag force at calculation point. Unit [kN/m] No
1. Blade number
2. Radius [m] (nearest inner calculation point is
used)

aero moment Aerodynamic moment at calculation point. Unit
[kNm/m]

No

1. Blade number
2. Radius [m] (nearest inner calculation point is
used)

aero secforce Aerodynamic force at calculation point. Local aero
coo. Unit [kN/m]

No

1. Blade number
2. Dof number (1=Fx , 2=Fy , 3=Fz)
3. Radius [m] (nearest inner calculation point is
used)
4. Coordinate system (1=aero, 2=blade, 3=global,
4=rotor polar)
Note that 4th input argument is optional
(default=1)

aero secmoment Aerodynamic moment at calculation point. Local
aero coo. Unit [kNm/m]

No

1. Blade number
2. Dof number (1=Mx , 2=My , 3=Mz)
3. Radius [m] (nearest inner calculation point is
used)

aero int_force Integrated aerodynamic forces from tip to
calculational point. NB the integration is
performed around the C3/4 location. Unit [kN]

No

1. Coordinates system (1=local aero coo, 2=blade
ref. system, 3=global, 4=rotor polar)
2. Blade number
3. Dof number (1=Mx , 2=My , 3=Mz)
4. Radius [m] (nearest inner calculation point is
used)

aero int_moment Integrated aerodynamic moment from tip to
calculational point. NB the integration is
performed around the C3/4 location. Unit [kNm]

No

1. Coordinates system (1=local aero coo, 2=blade
ref. system, 3=global, 4=rotor polar)
2. Blade number
3. Dof number (1=Mx , 2=My , 3=Mz)
4. Radius [m] (nearest inner calculation point is
used)

aero torque Integrated aerodynamic forces of all blades to rotor
torsion. Unit [kNm]. No parameters

No

aero thrust Integrated aerodynamic forces of all blades to rotor
thrust. Unit [kN]. No parameters

No

- 95



Command
1

Command 2 Explanation Label
option

aero position Position of calculation point. Unit [m]. Please be
aware that if the blade ref system is used, the
orientation is in the blade coo, but the origo is
still in the hub center.

No

1. Coordinates system (1=local aero coo, 2=blade
ref. system, 3=global, 4=rotor polar)
2. Blade number
3. Dof number (1=Mx , 2=My , 3=Mz)
4. Radius [m] (nearest inner calculation point is
used)

aero power Integrated aerodynamic forces of all blades to rotor
torsion multiplied by the rotor speed. Unit [kW].
No parameters

No

aero rotation Orientation of calculation point. Unit [deg]. No
1. Blade number
2. Dof number (1=θx , 2=θy , 3=θz)
3. Radius [m] (nearest inner calculation point is
used)
4. Coordinates system (1=blade_ref. coo, 2=rotor
polar coo.)

aero rotation_e Orientation of calculation point. Unit [deg]. No
1. Blade number
2. Dof number (1=θx , 2=θy , 3=θz)
3. Radius [m] (nearest inner calculation point is
used)
4. Coordinates system (1=blade_ref. coo, 2=rotor
polar coo.)

aero velocity Velocity of calculation point. Unit [m/s]. No
1. Coordinates system (1=local aero coo, 2=blade
ref. system, 3=global, 4=rotor polar)
2. Blade number
3. Dof number (1= Vx , 2=Vy , 3=Vz)
4. Radius [m] (nearest inner calculation point is
used)

aero acceleration Acceleration of calculation point. Unit [m/s2]. No
1. Coordinates system (1=local aero coo, 2=blade
ref. system, 3=global, 4=rotor polar)
2. Blade number
3. Dof number (1= Vx , 2=Vy , 3=Vz)
4. Radius [m] (nearest inner calculation point is
used)

aero tors_e Aeroelastic torsional twist minus initial static twist
of a blade section.

No

1. Blade number
2. Radius [m] (nearest inner calculation point is
used)

aero windspeed Free wind speed seen from the blade. Unit [m/s] No
1. Coordinate system (1=local aero coo, 2=blade
ref. system, 3=global, 4=rotor polar)
2. Blade number
3. Dof number (1= Vx , 2=Vy , 3=Vz)

96 -



Command
1

Command 2 Explanation Label
option

4. Radius [m] (nearest inner calculation point is
used)

aero wsp_rotor_avg Rotor average wind speed. Unit [m/s] No
1. Coordinate system (1=global; 2=rotor with y
perpendicular to the rotor plane, for zero yaw and
tilt equivalent to global coordinate system)

(New in 12.6.14) 3. Dof number (1= Vx , 2=Vy , 3=Vz)
aero spinner_lidar Sensor emulating a spinner mounted lidar No

1. Measurement type (1=single point, 3=volume
average)
2. Scan type (1=circular scan, 2=horizontal line
(sine sweep), 3=horizontal line (linear sweep),
4=circular 2D scan)
3. Focus length [m]
4. Measurement angle [deg]
5. Scanning velocity [rev/sec]
6. Velocity fraction (2D scan)
7. Aperture radius (volume) [m]
8. Number of points in volume scan
9. Wavelength (Volumen) [m]

aero induc Local induced velocity at calculation point. Unit
[m/s]

No

1. Coordinates system (1=local aero coo, 2=blade
ref. system, 3=global, 4=rotor polar)
2. Blade number
3. Dof number (1= Vx , 2=Vy , 3=Vz)
4. Radius [m] (nearest inner calculation point is
used)

aero induc_sector_ct Thrust coefficient at a position on the rotor. Unit
[-]

No

1. Radius [m]
2. Azimuth angle (zero downwards) [deg]

aero induc_sector_cq Torque coefficient at a position on the rotor. Unit
[-]

No

1. Radius [m]
2. Azimuth angle (zero downwards) [deg]

aero induc_sector_a Axial induction coefficient at a position on the
rotor. Unit [-]

No

1. Radius [m]
2. Azimuth angle (zero downwards) [deg]

aero induc_sector_am Tangential induction coefficient at a position on
the rotor. Unit [-]

No

1. Radius [m]
2. Azimuth angle (zero downwards) [deg]

aero induc_a_norm Axial velocity used in normalization expression
of rotor thrust coefficients. The average axial wind
velocity incl. induction. Unit [m/s]. No parameters.

No

aero induc_am_norm Tangential velocity used in normalization ex-
pression of torque coefficient. Average tangential
velocity at a given radius. Unit [m/s].

No

1. Radius [m]

- 97



Command
1

Command 2 Explanation Label
option

aero inflow_angle Angle of attack + rotation angle of profile related
to polar coordinates (not pitching). Unit [deg]

No

1. Blade number
2. Radius [m] (nearest inner calculation point is
used)

aero dcldalfa Gradient No
dCl/dα. Unit [deg−1]
1. Blade number
2. Radius [m] (nearest inner calculation point is
used)

aero dcddalfa Gradient No
dCd/dα. Unit [deg−1]
1. Blade number
2. Radius [m] (nearest inner calculation point is
used)

aero gamma Circulation strength at calculation point. Unit
[m2/s]

No

1. Blade number
2. Radius [m] (nearest inner calculation point is
used)

aero lambda Tip speed ratio, Unit [−] No
aero windspeed_boom Free wind speed seen by a boom mounted on a

blade section. Coordinate system used “blade ref.
system”. Unit [m/s].

No

1. Blade number
2. Radius [m] (nearest inner calculation point is
used)
3. Boom-length X, measured from half chord point
positive towards LE [m]
4. Boom-length Y, measured from half chord point
positive towards pressureside [m]

aero actuatordiskload Actuator disk load provide normalized load export
for the Actuator Disk Model.

No

1. DOF (1=Ft, 2=Fa, 3=Fr)
2. Radius [m] (nearest inner calculation point is
used)

aero grid_radius_nd Aerodynamic calculation point non-dim radius r/R No
1. Number of radial stations outputted (should
normally correspond to number of aerodynamic
calculation points on a blade)

aero vawt_induc_x Induction for a VAWToutputted in tangential polar
coordinates

No

1. disc number
2. azimuth number

aero vawt_induc_y Induction for a VAWT outputted in radial polar
coordinates

No

1. disc number
2. azimuth number

aero nacelle_lidar Model of a single-beam CW nacelle-mounted
lidar. Laser beam is approximated by a line with
a Lorentzian shaped weighting function. Outputs
are:

No

98 -



Command
1

Command 2 Explanation Label
option

1. Line-of-sight velocity [m/s]
2. Doppler spectrum variance [m2/s2]
3. Global x position of focus point
4. Global y position of focus point
5. Global z position of focus point
Input are:
1. Mounting distance from rotor center in global x
coordinates [m]
2. Mounting distance from rotor center in global y
coordinates [m]
3. Mounting distance from rotor center in global z
coordinates [m]
4. Half-cone opening angle of beam [deg]
5. Azimuth angle of beam measured (clockwise as
seen from turbine) from vertical up postion [deg]
6. Focus length measured from rotor center (along
the beam) [m]
7. Rayleigh length of beam (Gamma) [m]
8. half-width of integration interval over probe
volume [Gamma]
9. Number of integration points (recommendation:
100) [−]
10. Beam identifier number [−]

aero effective_wind_speed Estimation of rotor effective wind speed as a
(weighted) average of longitudinal wind speeds
within the rotor area:

No

veff =
n

√ ∫ 2π
0

∫ R

0 vnu (r ,ϕ)w(r ,ϕ)rdrdθ∫ 2π
0

∫ R

0 w(r ,ϕ)rdrdθ
. Unit [m/s]

Inputs are:
1. Number of blades [-]
2. Rotor radius (R) [m]
3. Tip speed ratio at rated wind speed [-] (only used
when input 9 is equal to 3)
4. Exclusion of root part [R] (only used when input
9 is equal to 3)
5. Normal measurement distance from rotor plane
[m]
6. Width of turbulence box [m] (use the values
from the turbulence box block)
7. Number of integration points alongwidth/height
[-]
8. power to weight wind speed with (n) [-]
9. Weighting method:
1: arithmetic mean
2: dCpdr weight w/o losses
3: dCpdr weight with (tip and root) losses
10. Optimum axial induction factor (only used
when input 9 is equal to 2 or 3)

For multi-rotor simulation, three commands are used: - Command 1: aero_mr - Command 2:
name of rotor given in main command block; aero - Command 3: as command 2 from above
table

- 99



Figure 7: Illustration of the boom coordinates used by the “windspeed_boom” command.

17.8 wind (wind output commands)

Command
1

Command 2 Explanation Only
option

Label
option

wind free_wind Wind vectorVx,Vy,Vz , (wind as if the turbine didn’t
exist).

Yes Yes

1. Coordinate system (1=global, 2=non rotating
rotor coordinates (x always horizontal, y always
out-of-plane))
2. x-pos (global coo)
3. y-pos (global coo)
4. z-pos (global coo)

wind free_wind_center_pos0 Wind vectorVx,Vy,Vz , (wind as if the turbine didn’t
exist).

Yes Yes

1. Coordinate system (1=global, 2=non rotating
rotor coordinates (x always horizontal, y always
out-of-plane)) _center_pos0

wind free_wind_hor Horizontal wind component velocity [m/s] and
direction [deg] defined to output. Dir=0whenwind
equals y-dir.

Yes Yes

1. Coordinate system (1=global, 2=non rotating
rotor coordinates (x always horizontal, y always
out-of-plane))
2. x-pos (global coo)
3. y-pos (global coo)
4. z-pos (global coo)

wind free_wind_-
hor_center_pos0

Horizontal wind component velocity [m/s] and
direction [deg] defined to output. Dir=0whenwind
equals y-dir.

Yes Yes

1. Coordinate system (1=global, 2=non rotating
rotor coordinates (x always horizontal, y always
out-of-plane))

wind free_wind_shadow As sensor “free_wind”, but with tower shadow
included.

Yes Yes

100 -



Command
1

Command 2 Explanation Only
option

Label
option

1. Coordinate system (1=global, 2=non rotating
rotor coordinates (x always horizontal, y always
out-of-plane))
2. x-pos (global coo)
3. y-pos (global coo)
z-pos (global coo)

17.9 wind_wake (wind wake output commands)

Command
1

Command 2 Explanation Only
option

Label
option

wind_wake wake_pos Position of the wake deficit center after the
meandering proces to the downstream end
position. x,y and z position is written in
meteorological coordinates (x, y, z)M = (u, v,w)
with origo in the position definedwith center_pos0
in the general wind commands.

Yes Yes

1. wake source number

17.10 dll (DLL output commands)

Command
1

Command 2 Explanation Label
option

dll inpvec Value from DLL input vector is defined to output yes
1. DLL number
2. array index number

dll outvec Value from DLL output vector is defined to output yes
1. DLL number
2. array index number

dll hawc_dll Special output commands for the “hawc_dll”
format. With this command the dll name can be
used in the output definitions

yes

1. string. Reference name of the dll given in the
begin – end hawc_dll input definitions.
2. string. “outvec” or “inpvec” can be used. Same
definition as previously written above.
3. Channel number in the in or out going array.

dll type2_dll Special output commands for the “type2_dll”
format. With this command the dll name can be
used in the output definitions

yes

1. string. Reference name of the dll given in the
begin – end hawc_dll input definitions.
2. string. “outvec” or “inpvec” can be used. Same
definition as previously written above.
3. Channel number in the in or out going array.

dll sensor_id Name of sensor_id defined for other output sensor
1. Sensor number if sensor id refers to a vector

- 101



17.11 hydro (hydrodynamic output commands)

Command
1

Command 2 Explanation Only
option

Label
option

hydro water_surface Water surface level at a given horizontal location
is defined to output (global coordinates). Unit [m]

No No

1. x-pos
2. y-pos

hydro water_vel_acc Water velocityVx ,Vy ,Vz , and acceleration Ax , Ay ,
Az vectors defined to output. Unit [m/s] and [m/s2].

Yes No

1. x-pos
2. y-pos
3. z-pos

hydro fm Inertia force Fx , Fy , Fz contribution from
Morisons formula in a given calculation point. Unit
[kN]

Yes No

1. hydro element number
2. radius
3. coordinate system (1=global, 2=local hydro sec
coo)

hydro fd Drag force Fx , Fy , Fz contribution from Morisons
formula in a given calculation point. Unit [kN]

Yes No

1. hydro element number
2. sec number
3. coordinate system (1=global, 2=local hydro sec
coo)

17.12 general (general output commands)

Command
1

Command 2 Explanation Label
option

general constant A constant value is send to output No
1. constant value

general step A step function is created. This function changes
from f0 to f1 at time t0.

No

1. t0 [sec]
2. f0
3. f1

general step2 A step function is created. This function changes
from f0 to f1 between time t0 and t1 using linear
interpolation.

No

1. t0 [sec]
2. t1 [sec]
3. f0
4. f1

general step3 A step function is created. This function changes
from f0 to f1 between time t0 and t1 using a
continous sinus2 interpolation function.

No

1. t0 [sec]
2. t1 [sec]
3. f0
4. f1

general time The time is send to output. No parameters No

102 -



Command
1

Command 2 Explanation Label
option

general deltat The time increment is send to output. No
parameters

No

general harmonic A harmonic function is send to output No
F(t) = A sin(2π f0t) + k
1. A
2. f0
3. k

general harmonic2 A harmonic function is send to output No

F(t) =


0 t < t0
A sin(2π f0(t − t0)) + k t0 ≤ t ≤ t1
0 t > t1

1. A
2. f0
3. k
4. t0
5. t1

general stairs A series of steps resulting in a staircase signal is
created.

No

1. t0 time for first step change [s]
2. f0 start value of function
3. Step size
4. Step duration [s]
5. Number of steps

general status A status flag (mainly for controller purpose) is
written. A first time step and first iteration the
output value is 0. During the rest of the simulation
the value is 1 until last time step where the value
is -1.

No

general random A randon (uniform distribution) is written No
1. lower limit
2. upper limit
3. seed number

general impulse A step function which return to zero after a certain
duration

No

1. t0 time for impulse start [s]
2. Impulse duration [s]
3. f0 impulse level

general sensor_id Sensor name. No
1. Sensor number if sensor_id refers to a vector

17.13 Output_at_time (output at a given time)

This command is especially usefull if a snapshot of loads or other properties are required at a
specific time. This is mostly used for writing calculated aerodynamic properties as function of
blade location. The command block can be repeated as many times as needed (e.g. if outputs at
more than one time is needed)

The command must be written with the following syntax

output_at_time keyword time

- 103



where keyword is a command listed in the subsections below. Sofar only the command aero is
present. The last command word time is the time in seconds from simulation start to which the
output are written.

17.13.1 aero (aerodynamic output commands)

The first line in the output_at block must be the information regarding which file the outputs
are written (the filename command listed in the table below)

Command 1 Explanation Label
option

filename Filename incl. relative path to output file No
(example ./output/output_at.dat).
1. filename

alfa Angle of attack [deg]. No
1. Blade number

alfadot Pitch rate term (z-axis rotation) in local aerodynamic plane, as used for
non-circulatory contributions. Unit [rad/s].

No

1. Blade number
vrel Relative velocity [m/s] No

1. Blade number
cl Lift coefficient [-] No

1. Blade number
cd Drag coefficient [-] No

1. Blade number
cm Moment coefficient [-] No

1. Blade number
lift Lift force L [N/m] No

1. Blade number
drag Drag force D [N/m] No

1. Blade number
moment Moment force M [Nm/m] No

1. Blade number
secforce Aerodynamic forces [kN/m] No

1. Blade number
2. DOF number (1=x,2=y,3=z)
3. Coordinate system (1=aero, 2=blade, 3=global, 4=rotor polar)

secmoment Aerodynamic moments [kNm/m] No
1. Blade number
2. DOF number (1=x,2=y,3=z)
3. Coordinate system (1=aero, 2=blade, 3=global, 4=rotor polar)

int_force Aerodynamic forces integrated from tip to given radius [kN] No
1. Blade number
2. DOF number (1=x,2=y,3=z)
3. Coordinate system (1=aero, 2=blade, 3=global, 4=rotor polar)

int_moment Aerodynamic moment integrated from tip to given radius [kNm] No
1. Blade number
2. DOF number (1=x,2=y,3=z)
3. Coordinate system (1=aero, 2=blade, 3=global, 4=rotor polar)

inipos Initial position of sections in blade coo [m] No
1. Blade number
2. DOF number (1=x,2=y,3=z)

position Actual position of section [m] No
1. Blade number

104 -



Command 1 Explanation Label
option

2. DOF number (1=x,2=y,3=z)
3. Coordinate system (1=aero, 2=blade, 3=global, 4=rotor polar)

velocity Actual velocity of section [m/s] No
1. Blade number
2. DOF number (1=x,2=y,3=z)
3. Coordinate system (1=aero, 2=blade, 3=global, 4=rotor polar)

acceleration Actual acceleration of section [m/s] No
1. Blade number
2. DOF number (1=x,2=y,3=z)
3. Coordinate system (1=aero, 2=blade, 3=global, 4=rotor polar)

ct_local Local thrust coefficient [-]. Calculated based on the expression No
Ct =

Faxial B
1/2ρ2π r V 2

inf
1. Blade number

cq_local Local tangential force coefficient [-]. Calculated based on the expression No
Cq =

Ftan B
1/2ρ2π r V 2

inf
1. Blade number

chord Chord length [m] No
1. Blade number

induc Induced velocity [m/s] No
1. Blade number
2. DOF number (1=x,2=y,3=z)
3. Coordinate system (1=aero, 2=blade, 3=global, 4=rotor polar)

windspeed Free windspeed (without induction but incl. tower shadow effects if
used) [m/s]

No

1. Blade number
2. DOF number (1=x,2=y,3=z)
3. Coordinate system (1=aero, 2=blade, 3=global, 4=rotor polar)

inflow_angle Angle of attack + rotation angle of profile related to polar coordinates
(not pitching). Unit [deg]

No

1. Blade number
dcldalfa Gradient dCl/dα . Unit [deg−1] No

1. Blade number
dcddalfa Gradient dCd/dα . Unit [deg−1] No

1. Blade number
tiploss_f The local Prandtl tiploss factor f is written No

1. Blade number

- 105



A Example of main input file

begin Simulation;

time_stop 100;

solvertype 2 ; (sparse newmark)

on_no_convergence continue ;

logfile ./log/oc3_monopile_phase_1.log ;

animation ./animation/oc3_monopile_phase_1.dat;

;

begin newmark;

deltat 0.02;

end newmark;

end simulation;

;

begin new_htc_structure;

; Optional - Calculated beam properties of the bodies are written to file:

beam_output_file_name ./log/oc3_monopile_phase_1_beam.dat;

; Optional - Body initial position and orientation are written to file:

body_output_file_name ./log/oc3_monopile_phase_1_body.dat;

; body_eigenanalysis_file_name ./eigenfrq/oc3_monopile_phase_1_body_eigen.dat;

; structure_eigenanalysis_file_name ./eigenfrq/oc3_monopile_phase_1_strc_eigen.dat ;

;-------------------------------------------------------------------------------------

;

begin main_body; monopile 30m

name monopile ;

type timoschenko ;

nbodies 1 ;

node_distribution c2_def ;

damping 4.5E-02 4.5E-02 8.0E-01 1.2E-03 1.2E-03 4.5E-04 ;

begin timoschenko_input;

filename ./data/Monopile.txt ;

set 1 1 ; set subset 1=flexible,2=stiff

end timoschenko_input;

begin c2_def; Definition of centerline (main_body coordinates)

nsec 7;

sec 1 0.0 0.0 0.0 0.0 ; x,y,z,twist Mudline

sec 2 0.0 0.0 -0.1 0.0 ; x,y,z,twist

sec 3 0.0 0.0 -10.0 0.0 ; x,y,z,twist 50% between mudline and MSL

sec 4 0.0 0.0 -15.0 0.0 ; x,y,z,twist

sec 5 0.0 0.0 -20.0 0.0 ; x,y,z,twist MWL

sec 6 0.0 0.0 -25.0 0.0 ;

sec 7 0.0 0.0 -30.0 0.0 ; Monopile flange

end c2_def ;

end main_body;

;

begin main_body; tower 80m

name tower ;

type timoschenko ;

nbodies 1 ;

node_distribution c2_def ;

damping_posdef 6.456E-4 6.45E-4 1.25E-3 1.4E-3 1.4E-3 1.25E-3 ;

;damping_posdef Mx My Mz Kx Ky Kz , M´s raises overall level, K´s raises high freguency level

;

begin timoschenko_input;

106 -



filename ./data/NREL_5MW_st.txt ;

set 1 1 ;

end timoschenko_input;

begin c2_def; Definition of centerline (main_body coordinates)

nsec 8;

sec 1 0.0 0.0 0.0 0.0 ; x,y,z,twist

sec 2 0.0 0.0 -10.0 0.0 ;

sec 3 0.0 0.0 -20.0 0.0 ;

sec 4 0.0 0.0 -30.0 0.0 ;

sec 5 0.0 0.0 -40.0 0.0 ;

sec 6 0.0 0.0 -50.0 0.0 ;

sec 7 0.0 0.0 -60.0 0.0 ;

sec 8 0.0 0.0 -77.6 0.0 ;

end c2_def ;

end main_body;

;

begin main_body;

name towertop ;

type timoschenko ;

nbodies 1 ;

node_distribution c2_def ;

; damping_posdef 9.025E-06 9.025E-06 8.0E-05 8.3E-06 8.3E-06 8.5E-05 ;

damping 2.50E-04 1.40E-04 2.00E-03 3.00E-05 3.00E-05 2.00E-04 ;

;

;Nacelle mass and inertia:

concentrated_mass 2 0.0 1.9 0.21256 2.4E5 1741490.0 1.7E5 1741490.0 ;

begin timoschenko_input;

filename ./data/NREL_5MW_st.txt ;

set 2 1 ;

end timoschenko_input;

begin c2_def; Definition of centerline (main_body coordinates)

nsec 2;

sec 1 0.0 0.0 0.0 0.0 ; x,y,z,twist

sec 2 0.0 0.0 -1.96256 0.0 ;

end c2_def ;

end main_body;

;

begin main_body;

name shaft ;

type timoschenko ;

nbodies 1 ;

node_distribution c2_def ;

; damping_posdef 7.00E-3 7.00E-03 7.00E-02 3.48E-04 3.48E-04 1.156E-03 ;

damping_posdef 7.00E-3 7.00E-03 7.00E-02 6.5E-04 6.5E-04 1.84E-02 ;

concentrated_mass 1 0.0 0.0 0.0 0.0 0.0 0.0 5025497.444 ;generator equivalent slow shaft

concentrated_mass 5 0.0 0.0 0.0 56780 0.0 0.0 115926 ; hub mass and inertia;

begin timoschenko_input;

filename ./data/NREL_5MW_st.txt ;

set 3 1 ;

end timoschenko_input;

begin c2_def; Definition of centerline (main_body coordinates)

nsec 5;

sec 1 0.0 0.0 0.0 0.0 ; Tower top x,y,z,twist

sec 2 0.0 0.0 1.0 0.0 ;

- 107



sec 3 0.0 0.0 2.0 0.0 ;

sec 4 0.0 0.0 3.1071 0.0 ; Main bearing

sec 5 0.0 0.0 5.0191 0.0 ; Rotor centre

end c2_def ;

end main_body;

;

begin main_body;

name hub1 ;

type timoschenko ;

nbodies 1 ;

node_distribution c2_def ;

damping_posdef 2.00E-05 2.00E-05 2.00E-04 3.00E-06 3.00E-06 2.00E-05;

begin timoschenko_input;

filename ./data/NREL_5MW_st.txt ;

set 4 1 ;

end timoschenko_input;

begin c2_def; Definition of centerline (main_body coordinates)

nsec 2;

sec 1 0.0 0.0 0.0 0.0 ; x,y,z,twist

sec 2 0.0 0.0 1.5 0.0 ;

end c2_def ;

end main_body;

;

begin main_body;

name hub2 ;

copy_main_body hub1;

end main_body;

;

begin main_body;

name hub3 ;

copy_main_body hub1 ;

end main_body;

;

begin main_body;

name blade1 ;

type timoschenko ;

nbodies 9 ;

node_distribution c2_def;

; damping 3.5e-2 5.5e-4 5.0e-4 3.0e-4 0.5e-3 5.5e-3 ;

damping_posdef 1.16e-4 5.75e-5 6.1e-6 6.5e-4 5.1e-4 6.4e-4 ;

begin timoschenko_input ;

filename ./data/NREL_5MW_st.txt ;

set 5 1 ; set subset

end timoschenko_input;

begin c2_def; Definition of centerline (main_body coordinates)

nsec 19 ;

sec 1 0.0000 0.0000 0.000 0.000 ; x.y.z. twist

sec 2 -0.0041 0.0010 1.367 -13.308 ;

sec 3 -0.1058 0.0250 4.100 -13.308 ;

sec 4 -0.2502 0.0592 6.833 -13.308 ;

sec 5 -0.4594 0.1087 10.250 -13.308 ;

sec 6 -0.5699 0.1157 14.350 -11.480 ;

sec 7 -0.5485 0.0983 18.450 -10.162 ;

sec 8 -0.5246 0.0832 22.550 -9.011 ;

108 -



sec 9 -0.4962 0.0679 26.650 -7.795 ;

sec 10 -0.4654 0.0534 30.750 -6.544 ; 50% blade radius

sec 11 -0.4358 0.0409 34.850 -5.361 ;

sec 12 -0.4059 0.0297 38.950 -4.188 ;

sec 13 -0.3757 0.0205 43.050 -3.125 ;

sec 14 -0.3452 0.0140 47.150 -2.319 ;

sec 15 -0.3146 0.0084 51.250 -1.526 ;

sec 16 -0.2891 0.0044 54.667 -0.863 ;

sec 17 -0.2607 0.0017 57.400 -0.370 ;

sec 18 -0.1774 0.0003 60.133 -0.106 ;

sec 19 -0.1201 0.0000 61.500 -0.000 ;

end c2_def ;

end main_body;

;

begin main_body;

name blade2 ;

copy_main_body blade1;

end main_body;

;

begin main_body;

name blade3 ;

copy_main_body blade1 ;

end main_body;

;------------------------------------------------------------------------------------

;

begin orientation;

begin base;

body monopile;

inipos 0.0 0.0 20.0 ; initial position of node 1

body_eulerang 0.0 0.0 0.0;

end base;

;

begin relative;

body1 monopile last; indtil videre antages der internt i programmet at der

; altid kobles mellen sidste knude body1 og første

; knude body 2

body2 tower 1;

body2_eulerang 0.0 0.0 0.0;

end relative;

;

begin relative;

body1 tower last;

body2 towertop 1;

body2_eulerang 0.0 0.0 0.0;

end relative;

;

begin relative;

body1 towertop last;

body2 shaft 1;

body2_eulerang 90.0 0.0 0.0;

body2_eulerang 5.0 0.0 0.0; 5 deg tilt angle

;body initial rotation velocity x.y.z.angle velocity[rad/s] (body 2 coordinates):

body2_ini_rotvec_d1 0.0 0.0 -1.0 0.5 ;

end relative;

- 109



;

begin relative;

body1 shaft last;

body2 hub1 1;

body2_eulerang -90.0 0.0 0.0;

body2_eulerang 0.0 180.0 0.0;

body2_eulerang 2.5 0.0 0.0; 2.5deg cone angle

end relative;

;

begin relative;

body1 shaft last;

body2 hub2 1;

body2_eulerang -90.0 0.0 0.0;

body2_eulerang 0.0 60.0 0.0;

body2_eulerang 2.5 0.0 0.0; 2.5deg cone angle

end relative;

;

begin relative;

body1 shaft last;

body2 hub3 1;

body2_eulerang -90.0 0.0 0.0;

body2_eulerang 0.0 -60.0 0.0;

body2_eulerang 2.5 0.0 0.0; 2.5deg cone angle

end relative;

;

begin relative;

body1 hub1 last;

body2 blade1 1;

body2_eulerang 0.0 0.0 0;

end relative;

;

begin relative;

body1 hub2 last;

body2 blade2 1;

body2_eulerang 0.0 0.0 0.0;

end relative;

;

begin relative;

body1 hub3 last;

body2 blade3 1;

body2_eulerang 0.0 0.0 0.0;

end relative;

;

end orientation;

;------------------------------------------------------------------------

begin constraint;

;

begin fix0; fixed to ground in translation and rotation of node 1

body monopile;

end fix0;

;

begin fix1; fixed relative to other body in translation and rotation

body1 monopile last;

body2 tower 1;

110 -



end fix1;

;

begin fix1;

body1 tower last ;

body2 towertop 1;

end fix1;

;

begin bearing1; free bearing

name shaft_rot;

body1 towertop last;

body2 shaft 1;

bearing_vector 2 0.0 0.0 -1.0; x=coo (0=global.1=body1.2=body2) vector in body2

; coordinates where the free rotation is present

end bearing1;

;

begin fix1;

body1 shaft last ;

body2 hub1 1;

end fix1;

;

begin fix1;

body1 shaft last ;

body2 hub2 1;

end fix1;

;

begin fix1;

body1 shaft last ;

body2 hub3 1;

end fix1;

;

begin bearing2;

name pitch1;

body1 hub1 last;

body2 blade1 1;

bearing_vector 2 0.0 0.0 -1.0;

end bearing2;

;

begin bearing2;

name pitch2;

body1 hub2 last;

body2 blade2 1;

bearing_vector 2 0.0 0.0 -1.0;

end bearing2;

;

begin bearing2;

name pitch3;

body1 hub3 last;

body2 blade3 1;

bearing_vector 2 0.0 0.0 -1.0;

end bearing2;

end constraint;

;

end new_htc_structure;

;---------------------------------------------------------------------

- 111



begin wind ;

density 1.25;

wsp 8 ;

horizontal_input 1;

windfield_rotations 0.0 0.0 0.0 ; yaw, tilt, rotation

center_pos0 0.0 0.0 -90.00; hub_height

shear_format 3 0.12;

turb_format 1 ; 0=none, 1=mann,2=flex

tower_shadow_method 1;

tint 0.06 ;

scale_time_start 200;

wind_ramp_factor 0.0 200 0.5 1.0 ;

;------------------------------------------------------------------

begin tower_shadow_potential;

tower_offset 0.0;

nsec 2;

radius 0.0 2.10;

radius -68.10 1.15;

end tower_shadow_potential;

;------------------------------------------------------------------

; This next part is only to be include in case of wake effects being studied

begin wakes;

nsource 35;

source_pos 2548 -2900 -90 ;

source_pos 2123 -2417 -90 ;

source_pos 1706 -1942 -90 ;

source_pos 1281 -1458 -90 ;

source_pos 857 975 -90 ; WT5

source_pos 432 491 -90 ; WT6

source_pos -425 -484 -90 ; WT8

source_pos -850 -968 -90 ; WT9

source_pos -1267 1458 -90 ;

source_pos -1700 1935 -90 ;

source_pos -2125 2419 -90 ;

source_pos 3556 -2533 -90 ;

source_pos 3131 -2049 -90 ;

source_pos 2706 -1565 -90 ;

source_pos 2281 1081 -90 ; WT16

source_pos 1602 308 -90 ; WT17

source_pos 1176 -176 -90 ; WT18

source_pos 751 -660 -90 ; WT19

source_pos 326 -1144 -90 ; WT20

source_pos -99 -1627 -90 ; WT21

source_pos 3915 -1427 -90 ;

source_pos 3486 -943 -90 ;

source_pos 3062 -455 -90 ;

source_pos 2405 -292 -90 ; WT25

source_pos 1927 -836 -90 ; WT26

source_pos 1502 -1319 -90 ; WT27

source_pos 1077 -1803 -90 ; WT28

source_pos 652 -2287 -90 ; WT29

source_pos 4235 -283 -90 ;

source_pos 3813 205 -90 ;

source_pos 3163 944 -90 ;

112 -



source_pos 2679 1495 -90 ;

source_pos 2254 1979 -90 ;

source_pos 1829 2463 -90 ;

source_pos 1404 2947 -90 ;

op_data 1.4252392 2 ; 1.8 -23.1 ;1.87 0.0 rad/sec, pitch [grader] opstrøms;

ble_parameters 0.10 0.008 0;

begin mann_meanderturb ;

create_turb_parameters 33.6 1 3.7 508 0.0 ; L, alfaeps,gamma,seed, highfrq compensation

filename_v ./free_sector_monopile/wake-meander/wake_meand_turb_wsp8_s508_t1800v.bin ;

filename_w ./free_sector_monopile/wake-meander/wake_meand_turb_wsp8_s508_t1800w.bin ;

box_dim_u 16384 1.7578125 ;

box_dim_v 32 90 ;

box_dim_w 32 90 ;

end mann_meanderturb;

;

begin mann_microturb ;

create_turb_parameters 8.0 1.0 1.0 508 1.0 ; L, alfaeps,gamma,seed, highfrq compensation

filename_u ./free_sector_monopile/wake-micro/wake_turb_wsp8_s508_t1800u.bin ;

filename_v ./free_sector_monopile/wake-micro/wake_turb_wsp8_s508_t1800v.bin ;

filename_w ./free_sector_monopile/wake-micro/wake_turb_wsp8_s508_t1800w.bin ;

box_dim_u 128 1.0 ;

box_dim_v 128 1.0 ;

box_dim_w 128 1.0 ;

end mann_microturb;

end wakes;

;-----------------------------------------------------------------

begin mann;

create_turb_parameters 33.6 1 3.7 508 1.0 ; L, alfaeps,gamma,seed, highfrq compensation

filename_u ./free_sector_monopile/turb/turb_wsp8_s508_t1800u.bin ;

filename_v ./free_sector_monopile/turb/turb_wsp8_s508_t1800v.bin ;

filename_w ./free_sector_monopile/turb/turb_wsp8_s508_t1800w.bin ;

box_dim_u 16384 1.7578125 ;

box_dim_v 32 3.75;

box_dim_w 32 3.75;

end mann;

end wind;;

begin aero ;

nblades 3;

hub_vec shaft -3 ; rotor rotation vector (normally shaft component directed from

; pressure to suction side)

link 1 mbdy_c2_def blade1;

link 2 mbdy_c2_def blade2;

link 3 mbdy_c2_def blade3;

ae_filename ./data/NREL_5MW_ae.txt;

pc_filename ./data/NREL_5MW_pc.txt;

induction_method 1 ; 0=none, 1=normal

aerocalc_method 1 ; 0=ingen aerodynamic, 1=med aerodynamic

aerosections 30 ;

ae_sets 1 1 1;

tiploss_method 1 ; 0=none, 1=prandtl

dynstall_method 2 ; 0=none, 1=stig øye method,2=mhh method

end aero ;

;

;-------------------------------------------------------------------------------------------------

- 113



begin hydro;

begin water_properties;

rho 1027 ; kg/m^3

gravity 9.81 ; m/s^2

mwl 0.0 ;

mudlevel 20.0 ;

water_kinematics_dll ./wkin_dll.dll ./htc_hydro/reg_airy_h6_t10.inp ;

end water_properties;

;

begin hydro_element;

body_name monopile ;

hydrosections uniform 50 ; distribution of hydro calculation points from sec 1 to nsec

nsec 2;

sec 0.0 1.0 1.0 28.27 28.27 6.0 ; nr z Cm Cd V Vr width

sec 30.0 1.0 1.0 28.27 28.27 6.0 ; nr z Cm Cd V Vr width

end hydro_element;

end hydro;

;

;-------------------------------------------------------------------------------------------

begin dll;

begin hawc_dll;

filename ./control/bladed2hawc.dll ;

dll_subroutine regulation ;

arraysizes 15 15 ;

deltat 0.02;

begin output;

general time ;

constraint bearing2 pitch1 1; angle and angle velocity written to dll

constraint bearing2 pitch2 1; angle and angle velocity written to dll

constraint bearing2 pitch3 1; angle and angle velocity written to dll

constraint bearing2 shaft_rot 1; angle and angle velocity written to dll (slow speed shaft)

wind free_wind 1 0.0 0.0 -90.55; local wind at fixed position: coo

general constant 97.0 ; generator exchange ratio

end output;

;

begin actions;

body moment_int shaft 1 3 towertop 2 ;

end actions;

end hawc_dll;

;

begin hawc_dll;

filename ./control/pitchservo_pos.dll ;

dll_subroutine servo ;

arraysizes 15 15 ;

deltat 0.02 ;

begin output;

general time ; 1

dll inpvec 1 2; 2

dll inpvec 1 3; 3

dll inpvec 1 4; 4

constraint bearing2 pitch1 1; angle and angle velocity written to dll 5,6

constraint bearing2 pitch2 1; angle and angle velocity written to dll 7,8

constraint bearing2 pitch3 1; angle and angle velocity written to dll 9,10

end output;

114 -



;

begin actions;

body bearing_angle pitch1;

body bearing_angle pitch2;

body bearing_angle pitch3;

end actions;

end hawc_dll;

;

begin hawc_dll;

filename ./control/damper.dll ;

dll_subroutine damp ;

arraysizes 15 15 ;

begin output;

general time ; 1

general constant 5.0;

general constant 10.0;

general constant -1.0E1 ;

mbdy state vel towertop 1 1.0 tower;

end output;

;

begin actions;

mbdy force_ext towertop 2 1 towertop;

mbdy force_ext towertop 2 2 towertop;

end actions;

end hawc_dll;

end dll;

;

;--------------------------------------------------------------------------------------

;

begin output;

filename ./res/oc3_monopile_phase_1 ;

; time 390.0 450.0 ;

buffer 1 ;

general time;

data_format hawc_binary;

;

constraint bearing1 shaft_rot 2; angle and angle velocity

constraint bearing2 pitch1 5; angle and angle velocity

constraint bearing2 pitch2 5; angle and angle velocity

constraint bearing2 pitch3 5; angle and angle velocity

aero omega ;

aero torque;

aero power;

aero thrust;

wind free_wind 1 0.0 0.0 -90.0; local wind at fixed position: coo

hydro water_surface 0.0 0.0 ; x,y gl. pos

mbdy momentvec towertop 1 2 towertop # yaw bearing ;

mbdy forcevec towertop 1 2 towertop # yaw bering ;

mbdy momentvec shaft 4 1 shaft # main bearing ;

mbdy momentvec blade1 3 1 blade1 # blade 1 root ;

mbdy momentvec blade1 10 1 local # blade 1 50% local e coo ;

mbdy momentvec hub1 1 2 hub1 # blade 1 root ;

mbdy momentvec hub2 1 2 hub2 # blade 2 root ;

mbdy momentvec hub3 1 2 hub3 # blade 3 root ;

- 115



mbdy state pos towertop 1 1.0 global # tower top flange position ;

mbdy state pos tower 1 0.0 global # tower MSL position ;

mbdy state pos blade1 18 1.0 blade1 # blade 1 tip pos ;

mbdy state pos blade2 18 1.0 blade2 # blade 2 tip pos ;

mbdy state pos blade3 18 1.0 blade3 # blade 3 tip pos ;

mbdy state pos blade1 18 1.0 global # blade 1 tip pos ;

aero windspeed 3 1 1 63.0; wind seen from the blade:

; coo(1=local ae,2=blade,3=global,4=rotor polar),

aero windspeed 3 1 2 63.0;

aero windspeed 3 1 3 63.0;

aero alfa 1 45.0;

aero alfa 2 45.0;

aero alfa 3 45.0;

mbdy momentvec towertop 1 1 tower # tower top -1: below top mass ;

mbdy forcevec towertop 1 1 tower # tower top -1: below top mass ;

mbdy momentvec tower 1 1 tower # tower MSL ;

mbdy forcevec tower 1 1 tower # tower MSL ;

; mbdy statevec_new mbdyname center coo elastic/absolute r sign xy_vector:

mbdy statevec_new blade1 c2def blade1 elastic 88.0 1.d0 0.0 0.0

mbdy statevec_new blade1 default blade1 elastic 88.0 1.d0 0.0 0.0 ;

mbdy statevec_new blade1 c2def blade1 absolute 88.0 1.d0 0.0 0.0 ;

mbdy statevec_new blade1 default blade1 absolute 88.0 1.d0 0.0 0.0 ;

mbdy statevec_new blade1 default global absolute 88.0 1.d0 0.0 0.0 ;

; mbdy forcemomentvec_interp mbdy_name center coo_mbdy curved_distance_from_orig sign

mbdy forcemomentvec_interp blade1 default blade1 5 1.0 # blade1 R= 5 ;

mbdy forcemomentvec_interp blade1 default blade1 55 1.0 # blade1 R=55 ;

mbdy forcemomentvec_interp blade1 c2def local_aero 35 1.0 # blade1 R=35 ;

mbdy forcemomentvec_interp blade1 c2def local_aero 60 1.0 # blade1 R=60 ;

mbdy forcemomentvec_interp blade1 c2def local_element 50 1.0 # blade1 R=50 ;

; an example where the forces and moments are extracted at the c2def instead of the actual node:

mbdy forcemomentvec_interp blade1 c2def blade1 5 1.0 # blade1 R= 5 ; ()

;

dll outvec 1 1 # time;

dll outvec 1 2 # pitch angle 1;

dll outvec 1 3 # pitch vel 1;

dll outvec 1 4 # pitch angle 2;

dll outvec 1 5 # pitch vel 2;

dll outvec 1 6 # pitch angle 3;

dll outvec 1 7 # pitch vel 3;

dll outvec 1 8 # gen. azi slow;

dll outvec 1 9 # gen. speed slow;

dll outvec 1 10 # free wind x;

dll outvec 1 11 # free wind y;

dll outvec 1 12 # free wind z;

dll outvec 1 13 # gear ratio;

dll inpvec 1 1 # Mgen slow;

dll inpvec 1 2 # pitchref 1;

dll inpvec 1 3 # pitchref 2;

dll inpvec 1 4 # pitchref 3;

dll inpvec 1 7 # F;

dll inpvec 1 8 # Mechanical power generator [kW];

dll inpvec 1 10 # Pitch rate [rad/s];

116 -



dll inpvec 2 1 # pitch 1;

dll inpvec 2 2 # pitch 2;

dll inpvec 2 3 # pitch 3;

dll outvec 2 1 # time;

dll outvec 2 2 # pitchref 1;

dll outvec 2 3 # pitchref 2;

dll outvec 2 4 # pitchref 3;

dll outvec 2 5 # pitch angle 1;

dll outvec 2 6 # pitch speed 1;

dll outvec 2 7 # pitch angle 2;

dll outvec 2 8 # pitch speed 2;

dll outvec 2 9 # pitch angle 3;

dll outvec 2 10 # pitch speed 3;

end output;

;

exit;

- 117



B Code Version Data

The release notes from all previous HAWC2 releases are included as a text file in the all-in-one
download package available on http://tools.windenergy.dtu.dk/HAWC2/downloads.

118 -

http://tools.windenergy.dtu.dk/HAWC2/downloads


Risø’s research is aimed at solving concrete 
problems in the society. 
 
Research targets are set through continuous 
dialogue with business, the political system and 
researchers. 
 
The effects of our research are sustainable energy 
supply and new technology for the health 
sector. 
 

www.risoe.dk 


	Cover
	Table of contents
	Preface
	Acknowledgements
	Contributors
	Getting started with HAWC2
	Running HAWC2
	Folder structure
	Debugging models

	General input layout
	Continue_in_file option

	HAWC2 version handling
	Coordinate systems
	Simulation
	Main command block - Simulation
	Sub command block - newmark

	Structural input
	Main command block - new_htc_structure
	Sub command block - main_body
	Sub command - orientation
	Sub command - constraint

	DLL control
	Main command block – dll
	Sub command block – hawc_dll
	Sub command block – type2_dll
	Sub command block – init
	Sub command block – output
	Sub command block – actions
	HAWC_DLL format example written in FORTRAN 90
	HAWC_DLL format example written in Delphi / Lazarus / Pascal
	HAWC_DLL format example written in C
	TYPE2_dll written in Delphi / Lazarus / Delphi
	TYPE2_dll written in C
	TYPE2_DLL format example written in FORTRAN 90

	Wind and Turbulence
	Main command block -wind
	Sub command block - mann
	Sub command block - flex
	File description of a user defined shear
	Example of user defined shear file
	Sub command block - wakes
	File description of a user defined wake deficit file
	Example of user defined wake deficit file
	Sub command block – tower_shadow_potential
	Sub command block – tower_shadow_jet
	Sub command block – tower_shadow_potential_2
	Sub command block – tower_shadow_jet_2
	Sub command block – turb_export

	Aerodynamics
	Main command block - aero
	Sub command block – dynstall_so
	Sub command block – dynstall_mhh
	Sub command block – dynstall_ateflap
	Sub command block – aero_noise
	Sub command block – bemwake_method
	Sub command block – nearwake_method
	Sub command block – vawtwake_method
	Data format for the aerodynamic layout
	Example of an aerodynamic blade layout file
	Data format for the profile coefficients file
	Example of the profile coefficients file “_pc file”
	Data format for the flap steady aerodynamic input (.ds file)
	Example of a .ds flap steady aerodynamic input file
	Data format for the user defined a-ct relation
	Main command block – blade_c2_def (for use with old_htc_structure format)

	Aerodrag (for tower and nacelle drag)
	Main command aerodrag
	Subcommand aerodrag_element

	Hydrodynamics
	Main command block - hydro
	Sub command block – water_properties
	Sub command block – hydro_element
	Description of the water_kinematics_dll format.
	User manual to the standard wkin.dll version 2.4.
	Main commands in the wkin.dll
	Sub command reg_airy
	Sub command ireg_airy
	Sub command det_airy
	Sub command strf
	Sub command wavemods
	Wkin.dll example file

	Soil module
	Main command block - soil
	Sub command block – soil_element
	Data format of the soil spring datafile

	External forces through DLL
	Main command block – Force
	Example of a DLL interface written in fortran90
	Example of a DLL interface written in Lazarus / Pascal

	Output
	Commands used with results file writing
	File format of HAWC_ASCII files
	File format of HAWC_BINARY files
	File format for gtsdf and gtsdf64 files
	mbdy (main body output commands)
	Constraint (constraint output commands)
	aero (aerodynamic related commands)
	wind (wind output commands)
	wind_wake (wind wake output commands)
	dll (DLL output commands)
	hydro (hydrodynamic output commands)
	general (general output commands)
	Output_at_time (output at a given time)

	Example of main input file
	Code Version Data

