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HAWC2 course
Lesson 2b: Aerodynamics

Lift and drag
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Lift and drag – example
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Results from CFD: Dynamic stall 
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Dynamic stall effects
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The Øye model
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Determining the separation function
• The separation function can be determined based on the inviscid, fully 

stalled and the steady lift curve:

• A typical inviscid lift curve could be the thin airfoil theory lift curve 
corrected for zero lift angle:
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• Øye suggest to use half the slope of the steady curve for the fully stalled 
lift curve and merge with the steady curve around 30 degrees

Time delay effects
• To mimic the fact that the airfoil will not immediately adjust to the new 

conditions, we assume that the slope of the separation function can be 
computed from the following expression assuming a reasonable time computed from the following expression assuming a reasonable time 
constant:
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Input for the Øye model
• The Øye model needs the following input:

A static lift curve– A static lift curve
– A inviscid lift curve
– A fully stalled lift curve
– A value for the time constant τ, Øye suggest a value around:
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The Øye model, practical implementation
At t=0 assume fs to be equal to the steady value as initial condition.
For each time step:
1 Based on the instantaneous AoA determine the new steady value of f1. Based on the instantaneous AoA determine the new steady value of fs , 

,using:

2. Compute the dynamic value of fs ,, using the time increment:

3 Compute the new instantaneous lift value using
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3. Compute the new instantaneous lift value using
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Dynamic stall modeling: Øye
• The dynamic stall model of Øye only models the unsteady lift.
• For typically wind turbine applications the unsteady viscous drag effects 

are typically small and are often neglectedare typically small and are often neglected.
• In contrast to helicopter aerodynamics where the dynamic value of the 

pitching moment is very important, the high torsion stiffness of wind 
turbine blades makes this less important. In practice the unsteady 
pitching moment can often be neglected for typical load calculations.
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Dynamic stall effects on lift, drag, moment
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The energy conversion – Bernoulli
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The energy conversion – 1D momentum
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Change in momentum
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Conservation of mass and insert in momentum equation
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1D momentum continued
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Introducing the induction factor a
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Extracted power for an ideal rotor is difference in power from inlet to outletp p
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Similar for the torque
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Similar for the torque
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The relation between thrust and axial induction
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Rotor plane is discretized into

independent concentric annular
elements

on which the 1D assumption is applied

Blade Element Momentum theory

on which the 1D assumption is applied
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Relative velocity

Induction model in HAWC2
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A non-rotating grid is defined in which induced velocities are
calculated. Enables e.g. possibility for different induction in top-
bottom.
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BEM in HAWC2 formulated locally in grid.

Axial thrust at given 
radial station on the 
blade

The thrust coefficient
is found
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BEM in HAWC2 continued
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k(3)=0.0892074

k(2)=0.0544955

k(1)=0.251163

k(0)=-0.0017077
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Tangential wake rotation

Angular momentum on annular ring
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Tangential blade forces on annular ring

Above equations solved for the 
t ti l i d ti f t
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tangential induction factor




Var

cNCW
a Bx

)1(8

)(
'

2

2




Tip correction
• Tip-loss

– Inherent in BEM method: Forces smeared out. Corresponds to an 
infinite number of blades.

– Prandtl suggested we can define a tip loss factor F which is the ratio 
between the load distribution for an optimally loaded rotor and the 
load distribution for a rotor with an infinite number of blades that load distribution for a rotor with an infinite number of blades that 
gives the same induced velocity.

– The derivation of the correction is very complex, and is based on the 
vortex system behind a rotor with a finite number of blades. Original 
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Tip loss correction in HAWC2
• The tiploss model used in HAWC2 is based on the modified expression by 

Wilson and Lissaman
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• This factor is inserted in the induction calculation
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BEM procedure
• For each point in the polar grid

1. Get the local wsp and use local induced wsp from previous timestep/iteration
2. Get the local CT calculated at the two neighboring blades if the local wsp and 

induction was used there.
3. Account for Prandtl tiploss
4. Interpolate CT based on azimuthal distance between grid point and the two 

blades. Now the local CT is known.
5. Calculate local induction factor a
6. Correct mean level of a based on skew inflow angle.
7. Calculate tangential induction factor am

8. Calculate induced wind speeds axial (1) and tangential 
9. Correct for azimuthal variations of axial induction u related to skew inflow 

angle incl. axial induction influence..
10. Update u and ut in time based on two first order low pass filters. One for 

nearwake contribution and one for farwake
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nearwake contribution and one for farwake.

• For each point on the blade
11. Get the induced velocity based on azimuthal interpolation of the two closest 

grid points at same radius.
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Corrections for yawed inflow
General case of momentum for rotor, Glauert

Which for axial flow is
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Azimuthal impact on yawed inflow

 Is the azimuth angle
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In HAWC2 the Coleman method is used
with a constant of 0.4 instead of 0.5

Yawed inflow
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aKa acor 
Modification of induction



16

Comparison between HAWC2 and FIDAP

30deg
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60deg

Effect of dynamic inflow

• Dynamic wake: 
– Taking into account, that there is a build-up time for the wake of the 

turbine, and thus the loading, after a sudden change in inflow.
– This may be modeled as a filter  for instance consisting of two firstThis may be modeled as a filter, for instance consisting of two first

order differential equations
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Dynamic inflow

The Dynamic indflow ins handled by two first order
filters coupled in parallel with weight factors
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The non-dim time constants was found to approximately 2.0 for the far wake 
contribution and 0.5 for the near wake part

Dynamic inflow
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k0 0.6125 1.9210
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Dynamic inflow, comparison between
HAWC2 and FIDAP
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Actuator disc computations
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Examples of limitations of the BEM model
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For such special rotors a user defined a-ct relation can be used
if the characteristic is known from e.g. CFD.

Comparison
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Special shear (1)
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Special shear (2)
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Special shear (3)
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Wake situation

270 90
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3D effects on profile coefficients
NREL-test: Airfoil data, r/R=30%
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More on profile coefficients

• Aerodynamic coefficients usually obtained from 2D wind tunnel tests, 
limited angle of attack rangelimited angle of attack range

• Extend airfoil data over a larger angle of attack range 
• Apply 3D corrections
• Some useful references:

– B. Montgomerie, Methods for root effects, tip effects and extending the angle of 
attack range to +-180 deg, with application to aerodynamics for blades on wind 
turbines and propellers. FOI - Swedish Defence Research Agency, 2004, URL: 
http://www2.foi.se/rapp/foir1305.pdf

– C  Lindenburg  Investigation into Rotor Blade Aerodynamics  2003  URL: 
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– C. Lindenburg, Investigation into Rotor Blade Aerodynamics. 2003, URL: 
www.ecn.nl/publications/PdfFetch.aspx?nr=ECN-C--03-025

– S.-P. Breton, F. N. Coton, and G. Moe, “A study on rotational effects and 
different stall delay models using a prescribed wake vortex scheme and NREL 
phase VI experiment data,” Wind Energy, vol. 11, no. 5, pp. 459-482, 2008, 
doi:10.1002/we.269
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Aerodynamic input in HAWC2

begin aerobegin aero ;
nblades 3;
hub_vec hub_center 3 ;  rotor rotation vector (normally shaft composant
; directed from pressure to sustion side)
link 1 mbdy_c2_def blade1;
link 2 mbdy_c2_def blade2;
link 3 mbdy_c2_def blade3;
ae_filename ./data/H2_blade_ae_e112.dat ;
pc_filename ./data/H2_blade_pc_e112.dat ;
induction_method 1 ;     0=none, 1=normal
aerocalc_method 1 ;     0=no aerodynamic, 1=with aerodynamic
aerosections 30 ;
ae_sets 1 1 1;
tiploss method 1 ;     0=none, 1=prandtl
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tiploss_method 1 ;     0 none, 1 prandtl
dynstall_method 2 ;     0=none, 1=stig øye method,2=mhh method

end aero ;

Aerodynamic centers
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Aerodynamic layout
1 Aerodynamic planform Nset
1 22 Setnr Ndata
0 3.5 100 1 radius chord thick pc_set
0.5 3.5 100 1
2 1 3 5 99 9734 12.1 3.5 99.9734 1
4.9 4.2 74.46957 1
7.7 4.9 48.96571 1
10.5 5.6 35.71321 1
13.3 5.75 28.31165 1
16.1 5.656 23.86846 1
18.9 5.2787 21.97113 1
21.7 4.9014 20.58616 1
24.5 4.5241 19.67198 1
27.3 4.14736 19.04802 1
30.1 3.84814 18.19035 1
32.9 3.5489 17.32931 1
35.7 3.24968 16.76627 1
38.5 2.95046 16.33576 1
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38.5 2.95046 16.33576 1
41.3 2.65123 15.807 1
44.1 2.352 15.32908 1
47.033 1.83467 15.65677 1
49.967 1.31733 15.41907 1
52.26 0.913 14.99 1
52.9 0.8 14.7875 1

Profile coefficients file
1 Converted from Bladed format
8 nsets
1 65 14.5 P145_2_a
-180 0 0.018 0.041
170 0 52 0 1121 0 3075-170 0.52 0.1121 0.3075
-160 0.8 0.3271 0.328
-150 0.658 0.5209 0.3485
-140 0.58 0.7119 0.353
-130 0.501 0.9115 0.3475
-120 0.401 1.0929 0.342
-110 0.279 1.2316 0.3376
-100 0.141 1.3074 0.3225
-90 0 1.308 0.303
-80 -0.176 1.3074 0.29
-70 -0.348 1.2316 0.275
-60 -0.501 1.0929 0.2475
-50 -0.626 0.9115 0.22
-40 -0.725 0.7119 0.192
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40 0.725 0.7119 0.192
-30 -0.822 0.5209 0.151
-20 -0.931 0.3424 0.0406
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Aerodynamic forces on other components
• A simple drag model can be linked to other main_bodies.

begin aerodrag ;
begin aerodrag element ;begin aerodrag_element ;

mbdy_name tower;
aerodrag_sections uniform 10 ;
nsec 2 ;
sec 0.0 0.6 12.0 ;  tower bottom
sec 100.0 0.6 4.0 ;  tower top

end aerodrag_element;
;
begin aerodrag_element ;

mbdy_name nacelle;
aerodrag_sections uniform 2 ;
nsec 2 ;
sec 0.0 0.6 4.0 ; 
sec 5.0 0.6 4.0 ;   

end aerodrag element;

NB! Physical length in meters! 
Error in manual here!
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end aerodrag_element;
end aerodrag;

Exercise

P f i l ti  f  t  h i  i d  t t d • Perform simulation for step changes in wind, constant rpm and 
pitch, wind speeds ranging from 4-12m/s. Major outcome is to 
check that the input data are OK.
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