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Hydrodynamic modeling 
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Hydrodynamic model in HAWC2 

SWL 

Hydrodynamic kinematics: 

• Regular and iregular Airy waves, directional spreading 

• Wheeler stretching used for shallow waters 

Hydrodynamic loads: 

• Morisons formula (assumption of slender 
elements) 

• Axial damping term in end nodes 

• Axial dynamic pressure inserted as concentrated 
force on end nodes and distributed forces over 
conical sections 

Buoyancy loads from static 
pressure: 

• Axial dynamic pressure inserted as 
concentrated force on end nodes and 
distributed forces over conical sections 

• Distributed perpendicular force 
contribution on angled elements 

• Restoring moments distribution on 
conical sections 

• Influence of flooded water included 
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Wave kinematics 

Linear wave 
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Linear wave 

The elevation is described as a sinus 
function 
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Where the relation between wave number and frequency is given by the 
dispersion relation 
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The horizontal and vertical velocities 
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Linear wave (2) 
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The particle accelerations 

And the dynamic variation in pressure 
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Linear wave (3) 
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Wheeler stretching 

The velocity profile is extrapolated to the actual surface level by a 
stretching technique known as Wheeler stretching. 
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This is inserted in the calculation of velocities instead of z+d. It 
ensures that the velocities calculated at z=0 without stretching is 
inserted on the structure at the elevation level. 
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Stream function wave 

• Stream function waves now added to the wave kinematics generator. 
(Missing feature for a long time). 

• Method by Chaplin, Southhampton University 

– Dyn. pressure set to zero so far.  

 
Stream function wave at 44m depth. H=8m, T=10s 
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Water kinematics, iregular with spreading directions 

iii Ayxt  sin),,( 

 
  
  iii

i

i
ii A

zk

zzk
zyxtu  cossin

sinh

cosh
,,,

0

0


 
  
  ii

i

i
ii A

zk

zzk
zyxtw  cos

sinh

sinh
,,,

0

0


 
  
  iii

i

i
ii A

zk

zzk
zyxtu  coscos

sinh

cosh
,,,

0

02 


 
  
  ii

i

i
ii A

zk

zzk
zyxtw  sin

sinh

sinh
,,,

0

02 


 
  
  ii

i

i
i A

zk

zzk
gzyxtp  sin

cosh

cosh
,,,

0

0


),,(),,(
1

yxtyxt
N

i

i


 

),,,(),,,(
1

zyxtuzyxtu
N

i

i




),,,(),,,(
1

zyxtuzyxtu
N

i

i


 

),,,(),,,(
1

zyxtwzyxtw
N

i

i




),,,(),,,(
1

zyxtwzyxtw
N

i

i


 

),,,(),,,(
1

zyxtpzyxtp
N

i

i




 
  
  iii

i

i
ii A

zk

zzk
zyxtv  sinsin

sinh

cosh
,,,

0

0


iiiiiii ykxkt   sincos

 
  
  iii

i

i
ii A

zk

zzk
zyxtv  sincos

sinh

cosh
,,,

0

02 


),,,(),,,(
1

zyxtvzyxtv
N

i

i




),,,(),,,(
1

zyxtvzyxtv
N

i

i


 

)tanh( 0

2 zkgk iii 

velocity 

acceleration 

pressure 

HAWC2 Hydrodynamics 12 Risø DTU, Technical University of Denmark 

Jonswap spectrum for iregular waves: 
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 =0.07 for m , = 0.09 for >m. 
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Water kinematics, iregular with spreading directions 
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Directional spreading 
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The directional spreading distribution function 

The integrated function is calculated 
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dfF

The inverse of this function is 
calculated so theta can be found with 
basis of F value. 

The uniformly distributed phase 
angles are used as input to find a 
corresponding direction angle for each 
coefficient. 
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Wave kinematics 

• In the previous version all fourrier summations were done in the exact 
position and time of lookup. 

• Now a pregenerated field is created. 3 dimensions when spreading is included. 
Only height and time resolved for 2D waves. 

• 15 points in the height is used. Time resolution is Tmin/10. 

• Linear interpolation is used. 

 

• A 10 min time series on a jacket that used to take 2hours for simulations, is 
now ready after 12minutes! 

t 

z 

y 

The assumed relation between 
time and x pos is based on the 
group velocity of waves. 
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Comparison  
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Morison formula 

relreldrelRa UUDCUACUAdF 
2
1 

For flexible slender structures D/L<0.2 

Which for stiff slender structures decouples to 

aMrelreldM
D CCUUDCUCdF  1,

2
1

4

2
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Buoyancy model in HAWC2 

Boyancy implemented as the result of integration of external pressure 

 

• Buoyancy, distributed load contributions: 

• Buoyancy and drag contributions at end nodes 

Static 
pressure 

Dynamic 
pressure 

Viscous drag 

A : orientation matrix 
S : area 
r  : radius  

g : gravity 
P : pressure 
 : density 

z : vertical pos 
u : velocity 
dr/dz : conicity 
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Validation for a spar bouy 

Madjid Karimirad, Quentin Meissonnier, Zhen Gao, Torgeir Moan. 
HYDROELASTIC CODE-TO-CODE COMPARISON FOR A TENSION LEG 
SPAR-TYPE FLOATING WIND TURBINE. Submitted to Marine 
Structures journ. 2011. 

 

Surge 

Pitch 
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Spar bouy (2) 

Heave Tension 
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What about flooded members? 

• Classical approach in existing aeroelastic codes 

– Internal water applied as extra ”steel” mass to 
ensure correct inertia 

 

• This is not correct since eg. gravity force will 
accumulate wrongly in the steel structure 

 

• Another method is proposed that is valid for flooded 
members in compartments without free inner 
surfaces. 

Important for piles in the jacket 
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Flooded members – added mass 

cylwatercylsteelwaves umumF  

cylicylsteelrelreldrelRm uAumuuDCuACuA   
2
1

cylrel uuu  

cylsteelrelreldreliRmi umuuDCuAACuAA   
2
1)()(

And end with a new modified Morisons formula 
for flooded members 

The benefit is an added mass not affected by 
gravity.  

We start with the Morisons formula and include 
the flooded water 
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Buoyancy for flooded members 

• The boyancy is still a result of integration of external pressure 

• The flooded water will apply an internal pressure at same location as 
outer pressure from water 

• The result is that the inner area should be subtracted 

- Buoyancy and drag contributions at end nodes 

Static 
pressure 

Dynamic 
pressure 

Viscous drag 

A : orientation matrix 
S : area 
r  : radius  

g : gravity 
P : pressure 
 : density 

z : vertical pos 
u : velocity 
dr/dz : conicity 
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Also applied at inner 
nodes when jump in 
plate thickness occurs 

- Buoyancy, distributed load contributions: 

Dynamic pressure assumed not to 
change inner pressure (depends on 
design though) 
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Improvements of solver 
A.M. Hansen 

• External hydro added mass 
derived as an analytical 
integration of the external load. 

•  Separation of effects from large 
rotations/movements and local 
deformation. 

 

CM is the section added mass matrix 

Position of a point on a structure 

Acceleration of point 

External force 
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Better convergence from version 10.4 
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HAWC2 example 

begin HYDRO ; 

   begin WATER_PROPERTIES ; 

    rho 1025 ; [kg/m^3]  

    gravity 9.816 ; [m/s^2]  

    mwl 0.000; [m]  

    mudlevel 14.500 ; [m]  

    water_kinematics_dll ./wkin_dll.dll   ./hydrohtc/reg_airy_1.htc ;  

   end WATER_PROPERTIES  ; 

; 

 begin HYDRO_ELEMENT ; 

    mbdy_name L1 ; 

     buoyancy 1 ; 

     update_states  1 ; (0: no dynamic interaction, 1: fully coupled solution 

     hydrosections auto 4 ; dist, of hydro calculation points from 1 to nsec 

    nsec  9 ;  z      Cm   Cd    A          Aref        width dr/dz Cd_a_(quad) Cm_a Cd_a_lin Ai 

      sec     0.000   1    1     1.1309734    1.1309734   1.20  0.0 0.0 0.0 0.0     0.9503318 ; 

      sec     5.005   1    1     1.1309734    1.1309734   1.20  0.0 0.0 0.0 0.0     0.9503318 ; 

      sec     5.015   1    1     1.5393804    1.5393804   1.40  0.0 0.0 0.0 0.0     0.9503318 ; 

      sec    20.408   1    1     1.5393804    1.5393804   1.40  0.0 0.0 0.0 0.0     0.9503318 ; 

      sec    20.418   1    1     1.5393804    1.5393804   1.40  0.0 0.0 0.0 0.0     1.0028749 ; 

      sec    43.046   1    1     1.5393804    1.5393804   1.40  0.0 0.0 0.0 0.0     1.0028749 ; 

      sec    43.056   1    1     1.1309734    1.1309734   1.20  0.0 0.0 0.0 0.0     1.0028749 ; 

      sec    49.431   1    1     1.1309734    1.1309734   1.20  0.0 0.0 0.0 0.0     1.0028749 ; 

      sec    61.215   1    1     1.1309734    1.1309734   1.20  0.0 0.0 0.0 0.0     1.0028749 ; 

   end HYDRO_ELEMENT ;  

end HYDRO ; 
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Wkin_dll input file example, regular airy 
begin wkin_input ;  

  wavetype 0 ; 0=regular, 1=irregular, 2=deterministic  

  wdepth 220.0 ;  

;  

  begin reg_airy ;  

    stretching 0; 0=none, 1=wheeler  

    wave 9 12.6;  Hs,T  

  end;  

end;  

;  

exit ;  
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Wkin_dll input file example, irregular airy 
begin wkin_input ;  

  wavetype 1 ; 0=regular, 1=irregular, 2=deterministic  

  wdepth 220.0 ;  

;  

  begin ireg_airy ;  

    stretching 0;   0=none, 1=wheeler  

    spectrum   1;  (1=jonswap)  

    jonswap    9 12.6 3.3 ; (Hs, Tp, gamma)  

    coef       200 1 ; (coefnr, seed)  

    spreading 1 2; (type(0=off 1=on), s parameter (pos. integer min 1)  

  end;  

end;  

;  

exit ;  
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Wkin_dll input file example, deterministic airy 

begin wkin_input ;  

  wavetype 2 ; 0=regular, 1=irregular, 2=deterministic  

  wdepth 220.0 ;  

;  

  begin det_airy ;  

    stretching 0; 0=none, 1=wheeler  

    file ..\waves\elevation.dat ;  

    nsamples 32768 ;  

    nskip 1 ;  

    columns 1 2 ; time column, elevation column  

  end;  

end;  

exit ;  

 

time, elevation 

0.0   0.0   

0.1   0.2 

0.2   0.4 

0.3   0.6 

0.4   0.8 

0.5   0.9 

0.6   1.0 

0.7   0.9 

0.8   0.8 

0.9   0.6 

 

..\waves\elevation.dat   file example 
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Wkin_dll input file example, stream function 
begin wkin_input ;  

  wavetype 3 ; 0=regular, 1=irregular, 2=deterministic, 3=stream function  

  wdepth 40.0 ;  

;  

 begin strf ; 

    wave 8.0 10.0 0.0 ;     Hs,T,current 

  end;  

end;  

;  

exit ;  

 


