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What is HAWCStab2?

Linear aeroelastic model for 
eigenvalue and frequency domain 
analysis of wind turbines and blades

Nonlinear kinematics based on co-
rotational elements with possibility of 
bearings e.g. generator and pitch.

Uniform inflow to give a stationary 
steady state.

Analytical linearization about the 
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Analytical linearization about the 
stationary steady state.

Unsteady aerodynamics based on 
Leishman-Beddoes with a two state 
(per calc. point) model of dynamic 
inflow.

Nonlinear kinematic formulation

Unloaded 
backward 
swept blade

Blade in steady state equilibrium

Aerodynamic calculation point
on element number k

Plane of airfoil chord 
coordinate system

Updated element 
coordinate system
of element number k

Element positions and orientations
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Wind
Rotation
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Nonlinear steady state
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Linear equations for small vibrations about
the nonlinear steady state

Coupling to 
structural states
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= elastic (and bearing) degrees of freedom

= aerodynamic state variables

= forces due to actuators and wind disturbance
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Backward swept blades 
Baseline – NREL 61.5m with CG at EA
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Steady state power and pitch angle & torque

Power

Pitch angle

Pitch torque

Relative power diff.
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Steady state thrust and tip deflection

Tip deflection
downwind

Thrust

Spanwise tip 
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Spanwise tip 
deflection

Flapwise blade moment

Modal frequencies and damping – 1st flap
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Aeroelatic flapwise mode shape at 10 m/s

75 %
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Flapwise blade root moment
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Edgewise blade root moment
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Flutter test case – Typical Section analogy

HAWCStab2 model
section

stiff & massless beam

small element flexible 
in flap & torsion
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Lowest damped modes for 0 deg pitch and 
increasing relative speed (           )

Second flap Second torsion
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Conclusions
• Backward swept blades twist towards feathering for flapwise bending in 

both structural and aeroelastic first flapwise bending modes

• This structural coupling of bending and torsion leads to higher aeroelastic 
modal frequency and lower aeroelastic damping of this mode

• The increased flapwise frequency of a backward swept blade is caused by 
added aerodynamic flapwise stiffness due to the twisting towards 
feathering when bending downwind

• This increased flapwise stiffness lowers the frequency response of 
backward swept blades at frequencies below the first flapwise frequency 
which can explain the reduced fatigue loads observed in previous studies
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which can explain the reduced fatigue loads observed in previous studies

• The previously reported slight increase in edgewise blade root loads of 
backward swept blades can be explained by a slight reduction of 
aeroelastic damping of the first edgewise bending mode

• The flutter limit in an overspeed situation seems to decrease with the 
backward sweep


